AAD  Vol.7 No.2 , June 2018
A Risk Coefficient for Radiation-Induced Dementia
ABSTRACT
The effect of ionising radiation exposure on dementia is approached by applying the causation models of John Stuart Mill and of Sir Austin Bradford Hill to mechanism and epidemiological evidence. Since ionizing radiation is known to kill brain cells in laboratory culture and to affect hippocampal neurogenesis in animal experiments at modest doses, it is reasonable to assume that exposure to radiation must affect neurological integrity and hence dementia rates in those who are exposed. There is persuasive evidence from the epidemiological studies of a large cohort of female nuclear workers that ionising radiation exposure is associated with significant low dose region dose-dependent increases in rates of dementia. Using results from these studies, the Probability of Causation approach (PC), conventionally employed for assessing cancer risk following radiation exposure, is extended to dementia to find a risk coefficient for all ages of 60 per Sievert cumulative exposure over the range 0-100 mSv. The finding suggests that natural background external exposures to ionizing radiation are partly responsible for the development of dementia in human populations. A simple general model for dementia is proposed.
Cite this paper
Busby, C. (2018) A Risk Coefficient for Radiation-Induced Dementia. Advances in Alzheimer's Disease, 7, 13-35. doi: 10.4236/aad.2018.72002.
References
[1]   ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP, 37, 1-332.

[2]   Richardson, R.B. (2009) Ionizing Radiation and Aging: Rejuvenating an Old Idea. Aging, 1, 887-902.
https://doi.org/10.18632/aging.100081

[3]   Hebert, L.E., Scherr, P.A., Bienias, J.L., et al. (2003) Alzheimer Disease in the US Population: Prevalence Estimates Using the 2000 Census. Archives of Neurology, 60, 1119-1122.
https://doi.org/10.1001/archneur.60.8.1119

[4]   Becker, N., Liebermann, D., Wesch, H., et al. (2008) Mortality among Thorotrast-Exposed Patients and an Unexposed Comparison Group in the German Thorotrast Study. European Journal of Cancer, 44, 1259-1268.
https://doi.org/10.1016/j.ejca.2008.02.050

[5]   Begum, N., Wang, B., Mori, M. and Vares, G. (2012) Does Ionizing Radiation Influence Alzheimer’s Disease Risk? Journal of Radiation Research, 53, 815-822.
https://doi.org/10.1093/jrr/rrs036

[6]   Asai, A., Matsutani, M., Kohno, T., et al. (1989) Subacute Brain Atrophy after Radiation Therapy for Malignant Brain Tumor. Cancer, 63, 1962-1974.
https://doi.org/10.1002/1097-
0142(19890515)63:10<1962::AID-CNCR2820631016>3.0.CO;2-V

[7]   Imperato, J.P., Paleologos, N.A. and Vick, N.A. (1990) Effects of Treatment on Long-Term Survivors with Malignant Astrocytomas. Annals of Neurology, 28, 818-822.
https://doi.org/10.1002/ana.410280614

[8]   Mill, J.S. (1879) A System of Logic. Longmans, Green & Co., London.

[9]   Bradford Hill, A. (1966) Principles of Medical Statistics. The Lancet Limited, London.

[10]   BEIR VII (2007) The Health Risks of Exposure to Low Levels of Ionizing Radiation. National Academy of Sciences, Washington DC.

[11]   Cardis, E., Vrijheid, M., Blettner, M., et al. (2007) The 15-Country Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry: Estimates of Radiation-Related Cancer Risks. Radiation Research, 167, 396-416.
https://doi.org/10.1667/RR0553.1

[12]   Harre, R. (1985) The Philosophies of Science. Oxford University Press, Oxford.

[13]   Busby, C., Yablolov, A.V., Schmitz Feuerhake, I., Bertell, R. and Scott Cato, M. (2010) ECRR 2010: The 2010 Recommendations of the European Committee on Radiation Risk. The Health Effects of Ionizing Radiation at Low Doses and Low Dose Rates. ECRR, Brussels.

[14]   Lowe, X.R., Bhattacharya, S., Marchetti, F., et al. (2009) Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer’s Disease. Radiation Research, 171, 53-65.
https://doi.org/10.1667/RR1389.1

[15]   Kempf. S.J., Janik, D., Barjaktarovic, Z., Braga-Tanaka III, I., Tanaka, S., Neff, F., Saran, A., Larsen. M.R. and Tapio, S. (2016) Chronic Low-Dose-Rate Ionising Radiation Affects the Hippocampal Phosphoproteome in the ApoE-/- Alzheimer’s Mouse Model. Oncotarget, 7, 71817-71832.

[16]   Demarin, V., Zavoreo, I., Kes, V.B., et al. (2011) Biomarkers in Alzheimer’s Disease. Clinical Chemistry and Laboratory Medicine, 49, 773-778.
https://doi.org/10.1515/CCLM.2011.139

[17]   Schaeffer, E.L., Figueiro, M. and Gattaz, W.F. (2011) Insights into Alzheimer Disease Pathogenesis from Studies in Transgenic Animal Models. Clinics, 66, 45-54.
https://doi.org/10.1590/S1807-59322011001300006

[18]   Wyss-Coray, T. and Rogers, J. (2012) Inflammation in Alzheimer Disease—A Brief Review of the Basic Science and Clinical Literature. Cold Spring Harbor Perspectives in Medicine, 2, a006346.
https://doi.org/10.1101/cshperspect.a006346

[19]   Nunomura, A., Perry, G., Aliev, G., et al. (2001) Oxidative Damage Is the Earliest Event in Alzheimer Disease. Journal of Neuropathology & Experimental Neurology, 60, 759-767.
https://doi.org/10.1093/jnen/60.8.759

[20]   Smith, M.A., Hirai, K., Hsiao, K., et al. (1998) Amyloid-β Deposition in Alzheimer Transgenic Mice Is Associated with Oxidative Stress. Journal of Neurochemistry, 70, 2212-2215.
https://doi.org/10.1046/j.1471-4159.1998.70052212.x

[21]   Jucker, M. and Walker, L.C. (2011) Pathogenic Protein Seeding in Alzheimer Disease and Other Neurodegenerative Disorders. Annals of Neurology, 70, 532-540.
https://doi.org/10.1002/ana.22615

[22]   Calissano, P., Matrone, C. and Amadoro, G. (2009) Apoptosis and in Vitro Alzheimer’s Disease Neuronal Models. Communicative & Integrative Biology, 2, 163-169.
https://doi.org/10.4161/cib.7704

[23]   Patrias, L.M., Klaver, A.C., Coffey, M.P., et al. (2011) Effects of External Beam Radiation on in Vitro Formation of Abeta1-42 Fibrils and Preformed Fibrils. Radiation Research, 175, 375-381.
https://doi.org/10.1667/RR2448.1

[24]   Valko, M., Leibfritz, D., Moncol, J., et al. (2007) Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84.
https://doi.org/10.1016/j.biocel.2006.07.001

[25]   Hirai, K., Aliev, G., Nunomura, A., et al. (2001) Mitochondrial Abnormalities in Alzheimer’s Disease. Journal of Neuroscience, 21, 3017-3023.
https://doi.org/10.1523/JNEUROSCI.21-09-03017.2001

[26]   Markesbery, W.R. and Lovell, M.A. (2007) Damage to Lipids, Proteins, DNA, and RNA in Mild Cognitive Impairment. Archives of Neurology, 64, 954-956.
https://doi.org/10.1001/archneur.64.7.954

[27]   Dalle-Donne, I., Rossi, R., Colombo, R., et al. (2006) Biomarkers of Oxidative Damage in Human Disease. Clinical Chemistry, 52, 601-623.
https://doi.org/10.1373/clinchem.2005.061408

[28]   Mancuso, C., Bates, T.E., Butterfield, D.A., et al. (2007) Natural Antioxidants in Alzheimer’s Disease. Expert Opinion on Investigational Drugs, 16, 1921-1931.
https://doi.org/10.1517/13543784.16.12.1921

[29]   BEIR V (1990) The Health Effects of Exposure to Low Levels of Ionising Radiation. Committee on Biological Effects of Ionising Radiation, National Academy Press, Washington DC.

[30]   Busby, C. (2013) Aspects of DNA Damage from Internal Radionuclides. In: Chen, C., Ed., New Research Directions in DNA Repair, IntechOpen, 597-637.
http://www.intechopen.com/books/new-research-directions-in-dna-repair/aspects-of-dna-damage-from-internal-radionuclides
https://doi.org/10.5772/53942


[31]   UNSCEAR (2000) Sources and Effects of Ionising Radiation, Report to the General Assembly, with Scientific Annexes. United Nations, New York.

[32]   Hall Eric, J. (2006) Radiobiology for the Radiologist. Lippincott, Philadelphia.

[33]   Belka, C., Budach, W., Kortmann, R.D., et al. (2001) Radiation Induced CNS Toxicity—Molecular and Cellular Mechanisms. British Journal of Cancer, 85, 1233-1239.
https://doi.org/10.1054/bjoc.2001.2100

[34]   Fike, J.R., Rosi, S. and Limoli, C.L. (2009) Neural Precursor Cells and Radiation Sensitivity. Seminars in Radiation Oncology, 19, 122-132.
https://doi.org/10.1016/j.semradonc.2008.12.003

[35]   Raber, J., Fan, Y., Matsumori, Y., Liu, Z., Weinstein, P.R., Fike, J.R. and Liu, J. (2004) Irradiation Attenuates Neurogenesis and Exacerbates Ischemia-Induced Deficits. Annals of Neurology, 55, 381-389.
https://doi.org/10.1002/ana.10853

[36]   Raber, J., Rola, R., LeFevour, A., Morhardt, D.R., Curley, J., Mizumatsu, S., VandenBerg, S.R. and Fike, JR. (2004) Radiation-Induced Cognitive Impairments Are Associated with Changes in Indicators of Hippocampal Neurogenesis. Radiation Research, 162, 39-47.
https://doi.org/10.1667/RR3206

[37]   Rola, R., Raber, J., Rizk, A., Otsuka, S., VandenBerg, S.R., Morhardt, D.R. and Fike, J.R. (2004) Radiation-Induced Impairment of Hippocampal Neurogenesis Is Associated with Cognitive Deficits in Young Mice. Experimental Neurology, 188, 316-330.

[38]   Madsen, T.M., Kristjansen, P.E., Bolwig, T.G. and Wortwein, G. (2003) Arrested Neuronal Proliferation and Impaired Hippocampal Function Following Fractionated Brain Irradiation in the Adult Rat. Neuroscience, 119, 635-642.

[39]   Winocur, G., Wojtowicz, J.M., Sekeres, M., Snyder, J.S. and Wang, S. (2006) Inhibition of Neurogenesis Interferes with Hippocampus-Dependent Memory Function. Hippocampus 16, 296-304.
https://doi.org/10.1002/hipo.20163

[40]   Gage, F.H. (2000) Mammalian Neural Stem Cells. Science, 287, 1433-1438.
https://doi.org/10.1126/science.287.5457.1433

[41]   Monje, M.L., Vogel, H., Masek, M., Ligon, K.L., Fisher, P.G. and Palmer, T.D. (2007) Impaired Human Hippocampal Neurogenesis after Treatment for Central Nervous System Malignancies. Annals of Neurology, 62, 515-250.
https://doi.org/10.1002/ana.21214

[42]   Fike, J.R., Rola, R. and Limoli, C.L. (2007) Radiation Response of Neural Precursor Cells. Neurosurgery Clinics of North America, 18, 115-127.
https://doi.org/10.1016/j.nec.2006.10.010

[43]   Mizumatsu, S., Monje, M.L., Morhardt, D.R., Rola, R., Palmer, T.D. and Fike, J.R. (2003) Extreme Sensitivity of Adult Neurogenesis to Low Doses of X-Irradiation. Cancer Research, 63, 4021-4027.

[44]   Monje, M.L., Mizumatsu, S., Fike, J.R. and Palmer, T.D. (2002) Irradiation Induces Neural Precursor-Cell Dysfunction. Nature Medicine, 8, 955-962.
https://doi.org/10.1038/nm749

[45]   Monje, M.L., Toda, H. and Palmer, T.D. (2003) Inflammatory Blockade Restores Adult Hippocampal Neurogenesis. Science, 302, 1760-1765.
https://doi.org/10.1126/science.1088417

[46]   Giedzinski, E., Rola, R., Fike, J.R. and Limoli, C.L. (2005) Efficient Production of Reactive Oxygen Species in Neural Precursor Cells after Exposure to 250 MeV Protons. Radiation Research, 164, 540-544.
https://doi.org/10.1667/RR3369.1

[47]   Rola, R., Zou, Z., Huang, T.-T., Fishman, K., Baure, J., Rosi, S., Milliken, H., Limoli, C.L. and Fike, J.R. (2007) Lack of Extracellular Superoxide Dismutase (EC-SOD) in the Microenvironment Impacts Radiation-Induced Changes in Neurogenesis. Free Radical Biology and Medicine, 42, 1133-1145.
https://doi.org/10.1016/j.freeradbiomed.2007.01.020

[48]   Schultheiss, T.E., Kun, L.E., Ang, K.K., et al. (1995) Radiation Response of the Central Nervous System. International Journal of Radiation Oncology, Biology, Physics, 31, 1093-1112.
https://doi.org/10.1016/0360-3016(94)00655-5

[49]   Raber, J. (2010) Unintended Effects of Cranial Irradiation on Cognitive Function. Toxicologic Pathology, 38, 198-202.

[50]   Prince, M., Albanese, E., Guerchet, M. and Prina, M. (2014) World Alzheimer Report 2014. Dementia and Risk Reduction. Alzheimers Disease International, London.

[51]   Tucker, J., Prior, P.F., Green, C.R., et al. (1989) Minimal Neuropsychological Sequelae Following Prophylactic Treatment of the Central Nervous System in Adult Leukemia and Lymphoma. British Journal of Cancer, 60, 775-780.
https://doi.org/10.1038/bjc.1989.358

[52]   Grosshans, D.R., Meyers, C.A., Allen, P.K., et al. (2008) Neurocognitive Function in Patients with Small Cell Lung Cancer. Effect of Prophylactic Cranial Irradiation. Cancer, 112, 589-595.
https://doi.org/10.1002/cncr.23222

[53]   Peper, M., Steinvorth, S., Schraube, P., et al. (2000) Neurobehavioral Toxicity of Total Body Irradiation: A Follow-Up in Long-Term Survivors. International Journal of Radiation Oncology, Biology, Physics, 46, 303-311.
https://doi.org/10.1016/S0360-3016(99)00442-3

[54]   Neider, C., Leicht, A., Motaref, B., et al. (1999) Late Radiation Toxicity after Whole Brain Radiotherapy: The Influence of Antiepileptic Drugs. American Journal of Clinical Oncology: Cancer Clinical Trials, 22, 573-579.
https://doi.org/10.1097/00000421-199912000-00007

[55]   Frytak, S., Shaw, J.N., O’Neill, B.P., et al. (1989) Leukencephalopathy in Small Cell Lung Cancer Patients Receiving Prophylactic Cranial Irradiation. American Journal of Clinical Oncology, 12, 27-33.
https://doi.org/10.1097/00000421-198902000-00007

[56]   Schulte, P.A., Burnett, C.A., Boeniger, M.S. and Johnson, J. (1996) Neurodegenerative Diseases: Occupational Occurrence and Potential Risk Factors, 1982 through 1991. American Journal of Public Health, 86, 1281-1288.
https://doi.org/10.2105/AJPH.86.9.1281

[57]   Wilkinson, G.S., Trieff, N., Graham, R. and Proire, R.L. (2000) Study of Mortality among Female Nuclear Weapons Workers. NIOSH, Washington DC.

[58]   Sibley, R.F., Moscato, B.S., Wilkinson, G.S. and Natarajan, N. (2003) Nested Case-Control Study of External Ionizing Radiation Dose and Mortality from Dementia within a Pooled Cohort of Female Nuclear Weapons Workers. American Journal of Industrial Medicine, 44, 351-538.
https://doi.org/10.1002/ajim.10288

[59]   Sibley, R., Wilkinson, G. and Servoss, T. (2006) A Case Control Study of Dementia in Female Nuclear Workers. Epidemiology, 17, S521.
https://doi.org/10.1097/00001648-200611001-01402

[60]   Loganovsky, K. (2009) Do Low Doses of Ionizing Radiation Affect the Human Brain? Data Science Journal, 8, BR13-BR35.
https://www.researchgate.net/publication/
220390293_Do_Low_Doses_of_Ionizing_Radiation_Affect_the_Human_Brain
https://doi.org/10.2481/dsj.br-04


[61]   Johnson, B.E., Becker, B., Goff, W.B., et al. (1985) Neurologic, Neuropsychologic and Computed Cranial Tomography Scan Abnormalities in 2- to 10-Year Survivors of Small-Cell Lung Cancer. Journal of Clinical Oncology, 3, 1659-1667.
https://doi.org/10.1200/JCO.1985.3.12.1659

[62]   Marazziti, D., Baroni, S., Lombardi, A., et al. (2014) Psychiatric Effects of Ionizing Radiation. The Clinical Neuropsychologist, 11, 61-67.

[63]   Preston, D.L., Shimizu, Y., Pierce, D.A., et al. (2003) Studies of Mortality of Atomic Bomb Survivors. Report 13: Solid Cancer and Noncancer Disease Mortality: 1950-1997. Radiation Research, 160, 381-407.
https://doi.org/10.1667/RR3049

[64]   Little, M.P. (2009) Cancer and Non-Cancer Effects in Japanese Atomic Bomb Survivors. Journal of Radiological Protection, 29, A43-A59.
https://doi.org/10.1088/0952-4746/29/2A/S04

[65]   Yamada, M., Sasaki, H., Mimori, Y., et al. (1999) Prevalence and Risks of Dementia in the Japanese Population: RERF’s Adult Health Study Hiroshima Subjects. Radiation Effects Research Foundation. Journal of the American Geriatrics Society, 47, 189-195.
https://doi.org/10.1111/j.1532-5415.1999.tb04577.x

[66]   Busby, C. (2016) Letter to the Editor on “The Hiroshima/Nagasaki Survivor Studies: Discrepancies between Results and General Perception” by Bernard R Jordan. Genetics, 204, 1627-1629.
https://doi.org/10.1534/genetics.116.195339

[67]   Wanatabe, T., Miyao, M., Honda, R. and Yamada, Y. (2008) Hiroshima Survivors Exposed to Very Low Doses of A-Bomb Primary Radiation Showed a High Risk of Cancers. Environmental Health and Preventive Medicine, 13, 264-270.
https://doi.org/10.1007/s12199-008-0039-8

[68]   Schmitz-Feuerhake, I., Busby, C. and Pflugbeil, P. (2016) Genetic Radiation Risk: A Neglected Topic in the Low Dose Debate. Environmental Health and Toxicology, 31, e2016001.

[69]   Centre for Disease Control CDC (2014) NIOSH Radiation Dose Reconstruction: Probability of Causation. Atlanta.
http://www.cdc.gov/niosh/ocas/pccalc.html

[70]   Clever, H.L. (1979) Krypton, Xenon and Radon. IUPAC Solubility Series, Vol. 2, Pergamon Press, Oxford.

 
 
Top