IJAA  Vol.8 No.2 , June 2018
The Geomagnetic Effects of Solar Activity as Measured at Ouagadougou Station
The coronal mass ejections (CMEs) produce by Sun poloidal magnetic fields contribute to geomagnetic storms. The geomagnetic storm effects produced by one-day-shock, two-days-shock and three-days-shock activities on Ouagadougou station F2 layer critical frequency time variation are analyzed. It is found that during the solar minimum and the increasing phases, the shock activity produces both positive and negative storms. The positive storm is observed during daytime. At the solar maximum and the decreasing phases only the positive storm is produced. At the solar minimum there is no three-days-shock activity. During the solar increasing phase the highest amplitude of the storm effect is due to the one-day-shock activity and the lowest is produced by the two-days-shock activity. At the solar maximum phase the ionosphere electric current system is not affected by the shock activity. Nevertheless, the highest amplitude of the storm effect is caused by the two-days-shock activity and the lowest by the one-day-shock activity. During the solar decreasing phase, the highest amplitude provoked by the storm is due to the three-days-shock activity and the lowest by the one-day-shock activity.
Cite this paper
Gyébré, A. , Gnabahou, D. and Ouattara, F. (2018) The Geomagnetic Effects of Solar Activity as Measured at Ouagadougou Station. International Journal of Astronomy and Astrophysics, 8, 178-190. doi: 10.4236/ijaa.2018.82013.
[1]   Legrand, J.P. and Simon, P.A. (1989) Solar Cycle and Geomagnetic Activity: A Review for Geophysicists. Part I. The Contributions to Geomagnetic Activity of Shock Waves and of the Solar Wind. Annals of Geophysics, 7, 565-578.

[2]   Simon, P.A. and Legrand, J.P. (1989) Solar Cycle and Geomagnetic Activity: A Review for Geophysicists. Part II. The Solar Sources of Geomagnetic Activity and Their Links with Sunspot Cycle Activity. Annals of Geophysics, 7, 579-594.

[3]   Richardson, I.G., Cliver, E.W. and Cane, H.V. (2000) Sources of Geomagnetic Activity over the Solar Cycle: Relative Importance of Coronal Mass Ejections, High-Speed Streams, and Slow Solar Wind. Journal of Geophysical Research, 105, 18200-18213.

[4]   Richardson, I.G. and Cane, H.V. (2002) Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000). Journal of Geophysical Research, 107, 1187.

[5]   Sahai, Y., Shiokawa, K., Otsuka, Y., Ihara, C., Ogawa, T., Igarashi, K., Miyazaki, S. and Saito, A. (2001) Imaging Observations of Midlatitude Ionospheric Disturbances during the Geomagnetic Storm of February 12, 2000. Journal of Geophysical Research, 106, 24481-24492.

[6]   Matsushita, S. (1959) A Study of the Morphology of Ionospheric Storm. Journal of Geophysical Research, 64, 305-320.

[7]   Mendillo, M. (2006) Storms in the Ionosphere: Patterns and Processes for Total Electron Content. Reviews of Geophysics, 44, RG4001.

[8]   Ouattara, F. and Amory Mazaudier, C. (2009) Solar-Geomagnetic Activity and Aa Indices toward a Standard Classification. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1736-1748.

[9]   Gyébré, A.M.F., Ouattara, F., Kaboré, S. and Zerbo, J.L. (2015) Time Variation of Shock Activity Due to Moderate and Severe CMEs from 1966 to 1998. British Journal of Science, 13, 1-7.

[10]   Obayashi, T. (1964) Morphology of Storms in the Ionosphere. In: Odishaw, H., Ed., Geophysical Research 1, MIT Press, Cambridge, 335-366.

[11]   Prölss, G.W. (1995) Ionospheric F Region Storms, in Handbook of Atmospheric Electrodynamics. In: Volland, H., Ed., CRC Press, Boca Raton, 195-248.

[12]   Fuller-Rowell, T.J., Codrescu, M.V., Fejer, B.G., Borer, W., Marcos, F. and Anderson, D.N. (1997) Dynamics of the Low-Latitude Thermosphere: Quiet and Disturbed Conditions. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 1533-1540.

[13]   Lu, G., Pi, X., Richmond, A.D. and Roble, R.G. (1998) Variations of Total Electron Content during Geomagnetic Disturbances: A Model/Observation Comparison. Geophysical Research Letters, 25, 253-256.

[14]   Buonsanto, M.J. (1999) Ionospheric Storms—A Review. Space Science Review, 88, 563-601.

[15]   Pi, X., Mendillo, M., Hughes, W.J., Buonsanto, M.J., Sipler, D.W., Kelly, J., Zhou, Q., Lu, G. and Hughes, T.J. (2000) Dynamical Effects of Geomagnetic Storms and Substorms in the Middle-Latitude Ionosphere: An Observational Campaign. Journal of Geophysical Research, 105, 7403-7417.

[16]   Sastri, J.H., Niranjan, K. and Subbarao, K.S.V. (2002) Response of the Equatorial Ionosphere in the Indian (Midnight) Sector to the Severe Magnetic Storm of July 15, 2000. Geophysical Research Letters, 29, 29-1-29-4.

[17]   Sahai, Y., Fagundes, P.R., Becker-Guedes, F., Abalde, J.R., Crowley, G., Pi, X., Igarashi, K., Amarante, G.M., Pimenta, A.A. and Bittencourt, J.A. (2004) Longitudinal Differences Observed in the Ionospheric F-Region during the Major Geomagnetic Storm of 31 March 2001. Annales Geophysicae, 22, 3221-3229.

[18]   Goncharenko, L.P., Salah, J.E., van Eyken, A., Howells, V., Thayer, J.P., Taran, V.I., Shpynev, B., Zhou, Q. and Chau, J. (2005) Observations of the April 2002 Geomagnetic Storm by the Global Network of Incoherent Scatter Radars. Annales Geophysicae, 23, 163-181.

[19]   Yizengaw, E., Dyson, P.L., Essex, E.A. and Moldwin, M.B. (2005) Ionosphere Dynamics over the Southern Hemisphere during the 31 March 2001 Severe Magnetic Storm Using Multi-Instrument Measurement Data. Annales Geophysicae, 23, 707-721.

[20]   Becker-Guedes, F., Sahai, Y., Fagundes, P.R., Espinoza, E.S., Pillat, V.G., Lima, W.L.C., Basu, Su., Basu, Sa., Otsuka, Y., Shiokawa, K., MacKenzie, E.M., Pi, X. and Bittencourt, J.A. (2007) The Ionospheric Response in the Brazilian Sector during the Super Geomagnetic Storm on 20 November 2003. Annals of Geophysics, 25, 863-873.

[21]   Sahai, Y., Fagundes, P.R., Becker-Guedes, F., Bolzan, M.J.A., Abalde, J.R., Pillat, V.G., de Jesus, R., Lima, W.L.C., Crowley, G., Shiokawa, K., MacDougall, J.W., Lan, H.T., Igarashi, K. and Bittencourt, J.A. (2005) Effects of the Major Geomagnetic Storms of October 2003 on the Equatorial and Low-Latitude F Region in Two Longitudinal Sectors. Journal of Geophysical Research, 110, A12S91.

[22]   Du, A.M., Tsurutani, B.T. and Sun, W. (2008) Anomalous Geomagnetic Storm of 21-22 January 2005: A Storm during Northward IMFs. Journal of Geophysical Research, 113, A10214.

[23]   Mendillo, M. and Narvaez, C. (2009) Ionospheric Storms at Geophysically-Equivalent Sites Part 1: Storm-Time Patterns for Sub-Auroral Ionospheres. Annals of Geophysics, 27, 1679-1694.

[24]   Kane, R.P. (2009) Cosmic Ray Ground Level Enhancements (GLEs) of October 28, 2003 and January 20, 2005: A Simple Comparison. Revista Brasileira de Geofísica, 27, 165-179.

[25]   Ouattara, F., Amory-Mazaudier, C., Fleury, R., Lassudrie Duchesne, P., Vila, P. and Petit didier, M. (2009) West African Equatorial Ionospheric Parameters Climatology Based on Ouagadougou Ionosonde Station Data from June 1966 to February 1998. Annals of Geophysics, 27, 2503-2514.

[26]   Mckenna-Lawlor, S., Li, L., Dandouras, I., Brandt, P.C., Zheng, Y., Barabash, S., Bucik, R., Kudela, K., Balaz, J. and Strharsky, I. (2010) Moderate Geomagnetic Storm (21-22 January 2005) Triggered by an Outstanding Coronal Mass Ejection Viewed via Energetic Neutral Atoms. Journal of Geophysical Research, 115, A08213.

[27]   Sahai, Y., Fagundes, P.R., de Jesus R., de Abreu, A.J., Crowley, G., Kikuchi, T., Huang, C.-S., Pillat, V.G., Guarnieri, F.L., Abalde, J.R. and Bittencourt, J.A. (2011) Studies of Ionospheric F-Region Response in the Latin American Sector during the Geomagnetic Storm of 21-22 January 2005. Annals of Geophysics, 29, 919-929.

[28]   Wang, W., Lei, J., Burns, A., Solomon, S., Wiltberger, M., Xu, J.J. and Coster, A. (2010) Ionospheric Response to the Initial Phase of Geomagnetic Storms: Common Features. Journal of Geophysical Research: Space Physics, 115, A07321.

[29]   Ouattara, F. and Amory Mazaudier, C. (2012) Statistical Study of the Diurnal Variation of the Equatorial F2 Layer at Ouagadougou from 1966 to 1998. Journal of Space Weather Space Climate, 2, 1-10.

[30]   Ouattara, F., Gnabahou, D.A. and Amory-Mazaudier, C. (2012) Seasonal, Diurnal, and Solar Cycle Variation of Electron Density at Two West Africa Equatorial Ionization Anomaly Stations. International Journal of Geophysics, 2012, Article ID: 640463.

[31]   Liemohn, M.W., Katus, R.M. and Ilie, R. (2015) Statistical Analysis of Storm-Time Near-Earth Current Systems. Annals of Geophysics, 33, 965-982.

[32]   Prölss, G.W. (1993) On Explaining the Local Time Variation of Ionospheric Storm Effects. Annals of Geophysics, 11, 1-9.

[33]   Zerbo, J.L., Ouattara, F., Zoundi, C. and Gyébré, A.M.F. (2011) Cycle solaire 23 et activité géomagnétique depuis 1868. Révue CAMES-Série A, 12, 255-262.

[34]   Ouattara, F., Ali, M.N. and Zougmoré, F. (2012) A Comparative Study of Seasonal and Quiet Time foF2 Diurnal Variation at Dakar and Ouagadougou Stations during Solar Minimum and Maximum for Solar Cycles 21-22. European Scientific Journal, 11, 426-435.

[35]   Gnabahou, D.A. and Ouattara, F. (2012) Ionosphere Variability from 1957 to 1981 at Djibouti Station. European Journal of Scientific Research, 73, 382-390.

[36]   Ouattara, F. (2013) IRI-2007 foF2 Predictions at Ouagadougou Station during Quiet Time Periods from 1985 to 1995. Archives of Physics Research, 4, 12-18.

[37]   Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T. and Vasyliunas, V.M. (1994) What Is a Geomagnetic Storm? Journal of Geophysical Research, 99, 5771-5792.

[38]   Mayaud, P.N. (1971) A Measurement of Planetary Magnetic Activity Based on Two Antipodal Observatories. Annales Geophysicae, 27, 67-71.

[39]   Mayaud, P.N. (1972) The aa Indices: A 100-Year Series, Characterizing the Magnetic Activity. Journal of Geophysical Research, 77, 6870-6874.

[40]   Faynot, J.M. and Vila, P. (1979) F-Region at the Magnetic Equator. Annales Geophysicae, 35, 1-9.

[41]   Vassal, J. (1982) La variation du champ magnétique et ses relations avec l’électrojet équatorial au Sénégal Oriental. Annales Geophysicae, 3, 347-355.

[42]   Vassal, J.A. (1982) Electrojet, contre électrojet et région F à Sarh (Tchad), Géophysique. ORSTOM, Paris.

[43]   Fuller-Rowell, T.J., Codrescu, M.V., Moffett, R.J. and Quegan, S. (1994) Response of the Thermosphere and Ionosphere to Geomagnetic Storms. Journal of Geophysical Research, 99, 3893-3914.

[44]   Prölss, G.W. and Jung, M.J. (1978) Traveling Atmospheric Disturbances as a Possible Explanation for Daytime Positive Storm Effects of Moderate Duration at Middle Latitudes. Journal of Atmospheric and Terrestrial Physics, 40, 1351-1354.

[45]   Balan, N., Shiokawa, K., Otsuka, Y., Watanabe, S. and Bailey, G.J. (2009) Super Plasma Fountain and Equatorial Ionization Anomaly during Penetration Electric Field. Journal of Geophysical Research, 114, A03310.

[46]   Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto, M. and Bailey, G.J. (2010) A Physical Mechanism of Positive Ionospheric Storms at Low and Mid Latitudes through Observations and Modeling. Journal of Geophysical Research, 115, A02304.

[47]   Balan, N., Liu, J.Y., Otsuka, Y., Liu, H. and Lühr, H. (2011) New Aspects of Thermospheric and Ionospheric Storms Revealed by CHAMP. Journal of Geophysical Research, 116, A07305.

[48]   Kelley, M.C., Vlasov, M.N., Foster, J.C. and Coster, A.J. (2004) A Quantitative Explanation for the Phenomenon Known as Storm-Enhanced Density. Geophysical Research Letters, 31, L19809.

[49]   Kikuchi, T., Araki, T., Maeda, H. and Maekawa, K. (1978) Transmission of Polar Electric Fields to the Equator. Nature, 273, 650-651.

[50]   Mannucci, A.J., Tsurutani, B.T., Iijima, B.A., Komjathy, A., Saito, A., Gonzalez, W.D., Guarnieri, F.L., Kozyra, J.U. and Skoug, R. (2005) Dayside Global Ionospheric Response to the Major Interplanetary Events of October 29-30, 2003 “Halloween storms”. Geophysical Research Letters, 32, L12S02.

[51]   Mikhailov, A.V., Skoblin, M.G. and Förster, M. (1995) Daytime F2-Layer Positive Storm Effect at Middle and Lower Latitudes. Annals of Geophysics, 13, 532-540.

[52]   Field, P.R. and Rishbeth, H. (1997) The Response of the Ionospheric F2-Layer to Geomagnetic Activity: An Analysis of World Wide Data. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 163-180.

[53]   Immel, T.J., Crowley, G., Craven, J.D. and Roble, R.G. (2001) Dayside Enhancements of Thermospheric O/N2 Following Magnetic Storm Onset. Journal of Geophysical Research, 106, 15,471-15,488.

[54]   Shuanggen, J., Rui, J. and Kutoglu, H. (2017) Positive and Negative Ionospheric Responses to the March 2015 Geomagnetic Storm from BDS Observations. Journal of Geodesy, 91, 613-626.

[55]   Danilov, A.D. (2013) Ionospheric F-Region Response to Geomagnetic Disturbances. Advances in Space Research, 52, 343-366.

[56]   Farley, D.T., Bonell, E., Fejer, B.G. and Larsen, M.F. (1986) The Prereversal Enhancement of the Zonal Electric Field in the Equatorial Ionosphere. Journal of Geophysical Research, 91, 13723-13728.

[57]   Fejer, B.G. (1981) The Equatorial Ionospheric Electric Fields: A Review. Journal of Atmospheric and Terrestrial Physics, 43, 377-386.

[58]   Fejer, B.G., Farley, D.T., Woodman, R.F. and Calderon, C. (1979) Dependence of Equatorial F-Region Vertical Drifts on Season and Solar Cycle. Journal of Geophysical Research, 84, 5792-5796.

[59]   Rishbeth, H. (1971) The F-Layer Dynamo. Planetary and Space Science, 19, 263-267.