JMP  Vol.9 No.6 , May 2018
Euclidean Model of Space and Time
Author(s) Radovan Machotka
ABSTRACT
The aim of this work is to show that the currently widely accepted geometrical model of space and time based on the works of Einstein and Minkowski is not unique. The work presents an alternative geometrical model of space and time, a model which, unlike the current one, is based solely on Euclidean geometry. In the new model, the pseudo-Euclidean spacetime is replaced with a specific subset of four-dimensional Euclidean space. The work shows that four-dimensional Euclidean space allows explanation of known relativistic effects that are now explained in pseudo-Euclidean spacetime by Einstein’s Special Theory of Relativity (STR). It also shows simple geometric-kinematical nature of known relativistic phenomena and among others explains why we cannot travel backward in time. The new solution is named the Euclidean Model of Space and Time (EMST).
Cite this paper
Machotka, R. (2018) Euclidean Model of Space and Time. Journal of Modern Physics, 9, 1215-1249. doi: 10.4236/jmp.2018.96073.
References
[1]   Einstein, A. (1905) Ann Phys-Berlin, 17, 891-921. [English translation: (1920) On Electrodynamic of Moving Bodies. In: The Principle of Relativity, Calcutta University Press, 1-34]

[2]   Minkowski, H. (1907) Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 53-111. [English translation: (1920) The Fundamental Equations for Electromagnetic Processes in Moving Bodies. In: The Principle of Relativity, Calcutta University Press, 1-69]

[3]   Minkowski, H. (1909) Phys Z, 10, 104-111. [English translation: (1920) Space and Time. In: The Principle of Relativity, Calcutta University Press, 70-88]

[4]   Hawking, S. and Penrose, R. (1996) Scientific American, 275, 60-65.
https://doi.org/10.1038/scientificamerican0796-60

[5]   Hawking, S. (2014) The European Physical Journal H, 39, 413-503.
https://doi.org/10.1140/epjh/e2014-50013-6

[6]   Sonego, S. (1995) Physics Letters A, 208, l-7.
https://doi.org/10.1016/0375-9601(95)00743-M

[7]   Tavokol, R. (2009) International Journal of Modern Physics A, 24, 1678-1685.
https://doi.org/10.1142/S0217751X09045224

[8]   Hohmann, M. (2013) Physical Review D, 87, 124034.
https://doi.org/10.1103/PhysRevD.87.124034

[9]   Brill, D. and Jacobson, T. (2006) General Relativity and Gravitation, 38, 643-651.
https://doi.org/10.1007/s10714-006-0254-9

[10]   Jonsson, R. (2001) General Relativity and Gravitation, 33, 1207-1235.
https://doi.org/10.1023/A:1012037418513

[11]   Lorentz, H.A. (1904) Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6, 809-831.

 
 
Top