Graphene  Vol.7 No.2 , April 2018
Study on Graphene Based Next Generation Flexible Photodetector for Optical Communication
We report on the efficient photodetection (PD) properties of graphene based p-i-n photodetector, where all the three layers are either single or multilayer graphene sheets. We report the bandwidth and responsivity performance of the device. This simple structure paves the way for the next generation flexible wireless communication systems. A theoretical model is used to study the carrier distribution and current in a graphene based p-i-n photodetector system.
Cite this paper
Majumder, K. , Barshilia, D. and Majee, S. (2018) Study on Graphene Based Next Generation Flexible Photodetector for Optical Communication. Graphene, 7, 9-16. doi: 10.4236/graphene.2018.72002.
[1]   Kumar, G.M., Fu, X., Ilanchezhiyan, P., Yuldashev, S.U., Lee, D.J., Cho, H.D. and Kang, T.W. (2017) Highly Sensitive Flexible Photodetectors Based on Self-Assembled Tin Monosulfide Nanoflakes with Graphene Electrodes. ACS Applied Materials & Interfaces, 9, 32142-32150.

[2]   Cao, F., Yu, D.J., Li, X.M., Zhu, Y., Sun, Z.G., Shen, Y.L., Wu, Y., Wei, Y. and Zeng, H.B. (2017) Highly Stable and Flexible Photodetector Arrays Based on Low Dimensional CsPbBr3 Microcrystals and On-Paper Pencil-Drawn Electrodes. Journal of Materials Chemistry C, 5, 7441-7445.

[3]   Xie, C. and Yan, F. (2017) Flexible Photodetectors Based on Novel Functional Materials. Small, 13, 1701822.

[4]   Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H.L. (2008) Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 146, 351.

[5]   Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.

[6]   Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009) The Electronic Properties of Graphene. Reviews of Modern Physics, 81, 109.

[7]   Majee, S., Song, M., Zhang, S.-L. and Zhang, Z.-B. (2016) Scalable Inkjet Printing of Shear-Exfoliated Graphene Transparent Conductive Films. Carbon, 102, 51-57.

[8]   Majee, S., Banerjee, D., Liu, X., Zhang, S.-L. and Zhang, Z.-B. (2017) Efficient and Thermally Stable Iodine Doping of Stacked Graphene Nano-Platelets. Carbon, 117, 240-245.

[9]   Majee, S., Liu, C., Wu, B., Zhang, S.-L. and Zhang, Z.-B. (2016) Ink-Jet Printed Highly Conductive and Reliable Pristine Graphene Patterns Achieved with Water-Based Ink and Aqueous Doping Processing. Carbon, 114, 77-83.

[10]   Miao, F., Majee, S., Song, M., Zhao, J., Zhang, S.-L. and Zhang, Z.-B. (2016) Inkjet Printing of Electrochemically-Exfoliated Graphene Nano-Platelets. Synthetic Metals, 220, 318-322.

[11]   Gabor, N.M., Song, J.C., Ma, Q., Nair, N.L., Taychatanapat, T., Watanabe, K., Taniquchi, T., Levitov, L.S. and Jarillo-Herrero, P. (2011) Hot Carrier-Assisted Intrinsic Photoresponse in Graphene. Science, 334, 648-652.

[12]   Lemme, M.C., Koppens, F.H.L., Falk, A.L., Rudner, M.S., Park, H., Levitov, L.S. and Marcus, C.M. (2011) Gate-Activated Photoresponse in a Graphene p-n Junction. Nano Letters, 11, 4134-4137.

[13]   Freitag, M., Low, T. and Avouris, P. (2013) Increased Responsivity of Suspended Graphene Photodetectors. Nano Letters, 13, 1644-1648.

[14]   An, X., Liu, F., Jung, Y.J. and Kar, S. (2013) Tunable Graphene-Silicon Heterojunctions for Ultrasensitive Photodetection. Nano Letters, 13, 909-916.

[15]   Majumder, K. and Das, N.R. (2012) Modeling the Gain and Bandwidth of Submicron Active Layer n+-i-p+ Avalanche Photodiode. Proceedings of the 16th International Workshop on Physics of Semiconductor Devices, 854-902.

[16]   Majumder, K. and Das, N.R. (2014) Effect of Ge-Composition on the Gain of a Thin Layer Si1-yGey Avalanche Photodiode. In: Jain, V. and Verma, A., Eds., Physics of Semiconductor Devices, Environmental Science and Engineering, Springer, Cham, 219-221.

[17]   Das, N.R. and Deen, M.J. (2002) A New Model for Avalanche Build-Up of Carriers in a SAGCM Avalanche Photodiode. IEEE Transactions on Electron Devices, 49, 2362-2366.

[18]   Majumder, K. and Das, N.R. (2013) Effect of Ge-Composition on the Frequency Response of a Thin Layer Si1-yGey Avalanche Photodiode, Microwave and Photonics (ICMAP).

[19]   Das, N.R. and Deen, M.J. (2002) On the Frequency Response of a Resonant-Cavity-Enhanced Separate Absorption, Grading, Charge, and Multiplication Avalanche Photodiode. Journal of Applied Physics, 92, 7133-7145.

[20]   Kim, H., Renault, O., Tyurnina, A., Simonato, J.-P., Rouchon, D., Mariolle, D., et al. (2014) Doping Efficiency of Single and Randomly Stacked Bilayer Graphene by Iodine Adsorption. Applied Physics Letters, 105, Article ID: 011605.

[21]   Zhao, Y., Wei, J., Vajtai, R., Ajayan, P.M. and Barrera, E.V. (2011) Iodine Doped Carbon Nanotubes Cables Exceeding Specific Electrical Conductivity of Metals. Scientific Reports, 1, 83.

[22]   Zhan, Y., Zhang, B., Cao, L., Wu, X., Lin, Z., Yu, X., Zhang, X., Zeng, D., Xie, F., Zhang, W., Chen, J. and Meng, H. (2015) Iodine Doped Graphene as Anode Material for Lithium Ion Battery. Carbon, 94, 1.

[23]   Meng, X., Tongay, S., Kang, J., Chen, Z., Wu, F., Li, S.S., Xia, J.B., Li, J. and Wu, J. (2013) Stable p- and n-Type Doping of Few-Layer Graphene/Graphite. Carbon, 57, 507-514.

[24]   Lee, J.K., Sung, H., Jang, M.S., Yoon, H. and Choi, M. (2015) Reliable Doping and Carrier Concentration Control in Graphene by Aerosol-Derived Metal Nanoparticles. Journal of Materials Chemistry C, 3, 8294-8299.