JMP  Vol.9 No.5 , April 2018
A Semi-Harmonic Frequency Pattern Organizes Local and Non-Local States by Quantum Entanglement in both EPR-Studies and Life Systems
A novel biophysical principle: the GM-model was revealed, describing an algorithm for coherent and non-coherent electromagnetic (EM) frequencies that either sustain or deteriorate life conditions. The particular frequency bands could be mathematically positioned on a Pythagorean scale, based on information distribution according to ratios of 2:3 in 1:2. The particular scale exhibits a core pattern of twelve eigenfrequency functions with adjacent self-similar patterns, according to octave hierarchy. In view of the current interest in coherency and entanglement in quantum biology, in the present paper, we report on a meta-analysis of 60 papers in physics that deal with the influence of electromagnetic frequencies on the promotion of entangled states in, so called, EPR experiments. Einstein, Podolsky and Rosen originated the EPR-correlation thought experiment for quantum-entangled particles, in which particles are supposed to react as one body. The meta-analyses of the EPR-experiments learned that entanglement, achieved in the experiments is real, and applied frequencies are located at discrete coherent configurations. Strikingly, all analysed EPR-data of the independent studies fit precisely in the derived scale of coherent frequency data and turned out to be virtually congruent with the above mentioned semi-harmonic EM-scale for living organisms. This implies that the same discrete coherent frequency pattern of EM quantum waves that determine local and non-local states is also applicable to biological order and that quantum entanglement is a prerequisite for life. The study may indicate that the implicate order of pilot-wave steering system, earlier postulated by David Bohm is composed of discrete entangled EM wave modalities, related to a pervading zero-point energy information field.
Cite this paper
Geesink, H. and Meijer, D. (2018) A Semi-Harmonic Frequency Pattern Organizes Local and Non-Local States by Quantum Entanglement in both EPR-Studies and Life Systems. Journal of Modern Physics, 9, 898-924. doi: 10.4236/jmp.2018.95056.
[1]   Geesink, J.H. and Meijer, D.K.F. (2016) Bio-Soliton Model that Predicts Non-Thermal Electromagnetic Frequency Bands, that Either Stabilize Living Cells. Electromagnetic Biology and Medicine, 36, 357-378.

[2]   Geesink, J.H. and Meijer, D.K.F. (2017) Electromagnetic Frequency Patterns that Are Crucial for Health and Disease Reveal a Generalized Biophysical Principle: The GM Scale. Quantum Biosystems, 8, 1-16.

[3]   Geesink, J.H. and Meijer, D.K.F. (2018) Mathematical Structure for Electromagnetic Frequencies, That May Reflect Bohm’s Implicate Order. Journal of Modern Physics, 9, 851-897.

[4]   Fröhlich, H. (1968) Long-Range Coherence and Energy Storage in Biological Systems. International Journal of Quantum Chemistry, 2, 641-649.

[5]   Fröhlich, H. (1969) Quantum Mechanical Concepts in Biology. In: Marois, M., Ed., From Theoretical Physics to Biology, North-Holland, Amsterdam, 13-22.

[6]   Nardecchia, I., Torres, J., Lechelon, M., et al. (2017) Out-of-Equilibrium Collective Oscillation as Phonon Condensation in a Model Protein. arXiv:1705.07975v2.

[7]   Belyaev, I.Y. (1998) Bioelectromagnetics, 19, 300-309.<300::AID-BEM4>3.0.CO;2-5

[8]   Lambert, N., Chen, Y., Cheng, Y., Li, C., Chen, G. and Nori, F. (2013) Quantum Biology. Nature Physics, 9, 10-11.

[9]   Arndt, M., Juffmann, T. and Vedral, V. (2009) Quantum Physics Meets Biology. HFSP Journal, 3, 386-400.

[10]   Rozzi, C.A., Falke, S.M., Spallanzani, N., Rubio, A., Molinari, E., Brida, D., Maiuri, M., Cerullo, G., Schramm, H., Christoffers, J. and Lienau, C. (2012) Quantum Coherence Controls the Charge Separation in a Prototypical Artificial Light-Harvesting System. Nature Communications, 4, 1602.

[11]   Rieper, R., Anders, J. and Vedral, V. (2011) Quantum Entanglement between the Electron Clouds of Nucleic Acids in DNA.

[12]   Tamulis, A. and Grigalavicius, M. (2014) Quantum Entanglement in Photoactive Prebiotic Systems. Systems and Synthetic Biology, 8, 117-140.

[13]   Tamulis, A. (2008) Quantum Mechanical Control of Artificial Minimal Living Cells. NeuroQuantology, 6, 311-322.

[14]   Tamulis, A. and Tamulis, V. (2008) Quantum Mechanical Design of Molecular Electronics OR Gate for Regulation of Minimal Cell Functions. Journal of Computational and Theoretical Nanoscience, 5, 545-553.

[15]   De la Pena, L., Cetto, A.M. and Valdes-Hernandez, A. (2015) The Emerging Quantum the Physics behind Quantum Mechanics. Springer, New York.

[16]   Halpern, P. (2016) Einstein’s Dice and Schrödinger’s Cat: How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics. Basic Books, New York.

[17]   Schrödinger, E. (1935) Mathematical Proceedings of the Cambridge Philosophical Society, 31, 555-563.

[18]   Dürr, D., Froemel, A. and Kolb, M. (2017) Einführung in die Wahrscheinlichkeitstheorie als Theorie der Typizität Miteiner Analyse des Zufalls in Thermodynamikund Quantenmechanik. Springer, New York.

[19]   Einstein, A., Podolsky, B. and Rosen, N. (1935) Physical Review, 47, 777.

[20]   Chibeni, S.S. (2012) A Logico-Conceptual Analysis of the Einstein-Podolsky-Rosen Argument. Draft Equipe REHSEIS.

[21]   Bell, J.S. (1988) Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge.

[22]   Reid, M.D., Drummond, P., Bowen, W., Cavalcanti, E., Lam, P., Bachor, H., Andersen, U.L. and Leuchs, G. (2009) Colloquium: The Einstein-Podolsky-Rosen Paradox, from Concepts to Applications. Reviews of Modern Physics, 81, 1727-1751.

[23]   Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. Physical Review, 85, 166-179, 180-193.

[24]   Bohm, D. and Hiley, B.J. (1975) On the Intuitive Understanding of Nonlocality as Implied by Quantum Theory. Foundations of Physics, 5, 93-109.

[25]   Peat, F.D. (1997) Infinite Potential: The Life and Times of David Bohm. Basic Books, New York, 133.

[26]   Sanz, S. (2017) Bohm’s Approach to Quantum Mechanics: Alternative Theory or Practical Picture? arXiv:1707.00609v1 [quant-ph] 30.

[27]   Holland, P.R. (2004) The Quantum Theory of Motion: An Account of the De Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge.

[28]   Valentini, A. (2009) Beyond the Quantum. Physics World, 22, 32-37.

[29]   Singh, V. (2008) Bohm’s Realist Interpretation of Quantum Mechanics. arXiv:0805.1779v1 [quant-ph].

[30]   Bell, J.S. (1986) Beables for Quantum Field Theory. Physics Reports, 137, 49-54.

[31]   Riggs, P.J. (2009) Quantum Causality: Conceptual Issues in the Causal Theory of Quantum Mechanics. Studies in History and Philosophy of Science 23, Springer, Berlin, 76.

[32]   Valentini, A. (2009) Beyond the Quantum. arXiv:1001.2758.

[33]   Dolce, D. (2017) Introduction to the Quantum Theory of Elementary Cycles: The Emergence of Space, Time and Quantum. arXiv:1707.00677v1 [physics.gen-ph].

[34]   Hooft, G. (2016) The Cellular Automaton Interpretation of Quantum Mechanics. Fundamental Theories of Physics, Vol. 185, Springer International Publishing, Berlin.

[35]   Hooft, G. (2007) A Mathematical Theory for Deterministic Quantum Mechanics. Journal of Physics: Conference Series, 67, Article ID: 012015.

[36]   Meijer, D.K.F. and Geesink, J.H. (2016) Phonon Guided Biology. Architecture of Life and Conscious Perception Are Mediated by Toroidal Coupling of Phonon, Photon and Electron Information Fluxes at Discrete Eigenfrequencies. NeuroQuantology, 14, 718-755.

[37]   Schrödinger, E. (1935) Die gegenwärtige Situation in der Quantenmechanik Naturwissenschaften. Naturwissenschaften, 23, 807-817.

[38]   Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters, 23, 880-884.

[39]   Aspect, A., Dalibard, J. and Roger, G. (1982) Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Physical Review Letters, 49, 1804-1807.

[40]   Hensen, B., Hanson, R., et al. (2015) Loophole-Free Bell Inequality Violation Using Electron Spins Separated by 1.3 Kilometres. Nature, 526, 682-686.

[41]   Giustina, M., et al. (2013) Bell Violation Using Entangled Photons without the Fair-Sampling Assumption Nature, 497, 227-230.

[42]   Christensen, et al. (2013) Detection-Loophole-Free Test of Quantum Nonlocality, and Applications. Physical Review Letters, 111, Article ID: 130406.

[43]   He, Q.Y. and Reid, M.D. (2013) Towards an Einstein-Podolsky-Rosen Paradox between Two Macroscopic Atomic Ensembles at Room Temperature. New Journal of Physics, 15, Article ID: 063027.

[44]   Krauter, et al. (2011) Entanglement Generated by Dissipation and Steady State Entanglement of Two Macroscopic Objects. Physical Review Letters, 107, Article ID: 080503.

[45]   Julsgaard, B., Kozhekin, A. and Polzik, E.S. (2011) Experimental Long-Lived Entanglement of Two Macroscopic Objects. Nature, 413, 400-403.

[46]   Duan, L.M., Lukin, M.D., Cirac, J.I. and Zoller, P. (2001) Long-Distance Quantum Communication with Atomic Ensembles and Linear Optics. Nature (London), 414, 413-418.

[47]   Gröblacher, S., Tomasz, P., Kaltenbaek, R., Brukner, C., Zukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) An Experimental Test of Non-Local Realism. Nature, 446, 871-875.

[48]   Zhu, S.N., Zhu, Y.Y. and Ming, N.B. (1997) Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice. Science, 278, 843-846.

[49]   Marshall, T.W. (2002) Nonlocality—The Party May Be Over.
arXiv:quant-ph/0203042 [quant-ph].

[50]   Tian, L., Li, S., Yuan, H. and Wang, H. (2016) Generation of Narrow-Band Polarization-Entangled Photon Pairs at a Rubidium D1 Line. Journal of the Physical Society of Japan, 85, Article ID: 124403.

[51]   Armstrong, S., Wang, M., The, R.Y., Gong, Q., He, Q., Janousek, J., Bachor, H.A., Reid, M.D. and Lam, P.K. (2015) Multipartite Einstein-Podolsky-Rosen Steering and Genuine Tripartite Entanglement with Optical Networks. Nature Physics, 11, 167-172.

[52]   Yu, Y.B., et al. (2011) Directly Produced Three-Color Entanglement by Quasi-Phase-Matched Third-Harmonic Generation. Optics Express, 19, 13949-13956.

[53]   Parigi, V. (2017) Multimode Quantum Optics Group. Lecture: Quantum Multimode Resources Based on Optical Frequency Combs and Simulation of Complex Quantum Network, Lecture.

[54]   Wiseman, H.M., Jones, S.J. and Doherty, A.C. (2007) Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox. Physical Review Letters, 98, Article ID: 140402.

[55]   Saunders, D.J., Jones, S.J., Wiseman, H.M. and Pryde, G.J. (2010) Experimental EPR-Steering Using Bell-Local States. Nature Physics, 6, 845-849.

[56]   Evans, D.A. and Wiseman, H.M. (2014) Optimal Measurements for Tests of Einstein-Podolsky-Rosen-Steering with No Detection Loophole Using Two-Qubit Werner States. Physical Review A, 90, Article ID: 012114.

[57]   Grosse, N.B., Bowen, W.P., McKenzie, K. and Lam, P.K. (2006) Harmonic Entanglement with Second-Order Nonlinearity. Physical Review Letters, 96, Article ID: 063601.

[58]   Liu, W., Wang, N., Li, Z. and Lia, Y. (2015) Quantum Frequency Up-Conversion of Continuous Variable Entangled States. Applied Physics Letters, 107, Article ID: 231109.

[59]   Sutherland, R.J. (2006) Causally Symmetric Bohm Model.

[60]   De la Pena, L. and Cetto, A.M. (1994) Quantum Phenomena and the Zero Point Radiation Field. Foundations of Physics, 24, 917-948.

[61]   Holland, P. (1996) Quantum Back-Reaction and the Particle Law of Motion.

[62]   Vallentini, A. (2002) Subquantum Information and Computation. Pramana—Journal of Physics, 59, 269-277.

[63]   Sarfatti, A. (2015) Bohm Pilot Wave Post Quantum Theory.

[64]   Keppler, J.A. (2013) A New Perspective on the Functioning of the Brain and the Mechanisms behind Conscious Processes. Frontiers in Psychology, 4, 242.

[65]   Keppler, J.A. (2016) On the Universal Mechanism Underlying Conscious Systems and the Foundations for a Theory of Mind. Open Journal of Philosophy, 6, 346-367.

[66]   Aharonov, Y., Popescu, S. and Tollaksen, J. (2010) A Time-Symmetric Formulation of Quantum Mechanics. Physics Today, 63, 27.

[67]   Cramer, J. (1988) An Overview of the Transactional Interpretation. International Journal of Theoretical Physics, 27, 227-236.

[68]   Maldacena, J. and Susskind, K. (2013) Cool Horizons for Entangled Black Holes. Fortschritte der Physik, 61, 781-811.

[69]   Setterfield, B. (2002) Exploring the Vacuum. Journal of Theoretics.

[70]   Setterfield, B. (2015) Quantum Effects and the Zero Point Energy (ZPE).

[71]   Bhaumik, M. (2016) Reality of the Wave Function and Quantum Entanglement.

[72]   Van Raamsdonk, M. (2010) Building up Spacetime with Quantum Entanglement. General Relativity and Gravitation, 42, 2323-2329.

[73]   Pastawski, F., Yoshida, B., Harlow, D. and Preskilla, J. (2015) Holographic Quantum Error-Correcting Codes: Toy Models for the Bulk/Boundary Correspondence.

[74]   Leifer, M.S. and Pusey, M.F. (2017) Is a Time Symmetric Interpretation of Quantum Theory Possible without Retrocausality? arXiv:1607.07871 [quant-ph].

[75]   Déli, E., Tozzi, A. and Peters, J.F. (2017) The Thermodynamic Analysis of Neural Computation. Journal of Neuroscience & Clinical Research, 3, 1.

[76]   Atasoy, S., Donelly, I., Pearson, J., et al. (2016) How Brain Networks Function in Connectome-Specific Harmonic Waves. Nature Communications, 7, Article No. 10340.

[77]   Davies, P.C.W. (2014) Does Quantum Mechanics Play a Non-Trivial Role in Life? Bio-Systems, 78, 69-79.

[78]   Prins, J. (2015) Einstein Is Correct “Entanglement” of Particles Is Not Possible.