SGRE  Vol.9 No.3 , March 2018
Analysis of T-Coefficients Using the Columnar Cylindrical Orientation of Solar Cell Grain
We report the study of the temperature dependance of the performance electronic parameters of an N-P solar cell by considering as model, the columnar cylindrical orientation associated to the dynamic junction velocity (SF) concept. We presented the photocurrent-photovoltage (I-V) and Power-photovoltage (P-V) characteristic curves. The short-circuit photocurrent (Isc), the open circuit photovoltage (Uoc), the fill factor (FF) and the efficiency (η) are linearly dependent on the temperature. The temperature coefficients (T-coefficient) relative to the short-circuit, open-circuit photovoltage and efficiency are calculated and the comparison with data from the literature showed the accuracy of the considered model.
Cite this paper
Leye, S. , Fall, I. , Mbodji, S. , Sow, P. and Sissoko, G. (2018) Analysis of T-Coefficients Using the Columnar Cylindrical Orientation of Solar Cell Grain. Smart Grid and Renewable Energy, 9, 43-56. doi: 10.4236/sgre.2018.93004.
[1]   Smets, A., Jäger, K., Isabella, O., Swaaj, R.V. and Zeman, M. (2016) Solar Energy: The Physics and Engineering of Photovoltaic Conversion Technologies and Systems. UIT Cambridge Ltd., England.

[2]   Green, M.A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E.D. (2010) Solar Cell Efficiency Tables (Version 45). Progress in Photovoltaics: Research and Applications. Progress in Photovoltaics, 23, 1-9.

[3]   Chander, S., Purohit, A., Sharma, Nehra, S.P. and Dhaka, M.S. (2015) Impact of Temperature on Performance of Series and Parallel Connected Mono-Crystalline Silicon Solar Cells. Energy Reports, 1, 175-180.

[4]   Dieye, M., Mbodji, S., Zoungrana, M., Zerbo, I., Dieng, B. and Sissoko, G. (2015) A 3D Modelling of Solar Cell’s Electric Power under Real Operating Point. World Journal of Condensed Matter Physics, 5, 275-283.

[5]   Mbodji, S., Zoungrana, M., Zerbo, I., Dieng, B. and Sissoko, G. (2015) Modelling Study of Magnetic Field’s Effects on Solar Cell’s Transient Decay. World Journal of Condensed Matter Physics, 5, 284-293.

[6]   Mbodji, S. and Sissoko, G. (2011) A Method to Determine the Solar Cell Resistances from Single I-V Characteristic Curve Considering the Junction Recombination Velocity (Sf). International Journal of. Pure Applied Science Technology, 6, 103-114.

[7]   Mbodji, S., Mbow, B., Zerbo, I. and Sissoko, G. (2012) Analysis of the Diffusion Capacitance’s Efficiency of the Bifacial Silicon Solar Cell in Steady State Operating Condition. Research Journal of Applied Sciences, Engineering and Technology, 4, 282-288.

[8]   Mbodji, S., Mbow, B., Barro, F.I. and Sissoko, G. (2011) A 3D Model for Thickness and Diffusion Capacitance of Emitter-Base Junction Determination in a Bifacial Polycrystalline Solar Cell under Real Operating Condition. Turkish journal of physics, 15, 281-291.

[9]   Singh, P. and Ravindra, N.M. (2012) Temperature Dependence of Solar Cell Performance: An Analysis. Solar Energy Materials & Solar Cells, 101, 36-45.

[10]   Miloudi, L., Acheli, D. and Chaib, A. (2013) Solar Tracking with Photovoltaic Panel. Energy Procedia, 42, 103-112.

[11]   Vasisht, M.S., Srinivasan, J. and Ramasesha, S.K. (2016) Performance of Solar Photovoltaic Installations: Effect of Seasonal Variations. Solar Energy, 131, 39-46.

[12]   Ghani, F., Rosengarten, G., Duke, M. and Carson, J.K. (2015) On the Influence of Temperature on Crystalline Silicon Solar Cell Characterisation Parameters. Solar Energy, 112, 437-445.

[13]   Trabelsi, A., Zouari, A. and Ben Ara, A. (2009) Modeling of Polycrystalline N+/P Junction Solar Cell with Columnar Cylindrical Grain. Revue des Energies Renouvelables, 12, 279-297.

[14]   Elnahwy, S. and Adeeb, N. (1988) Exact Analysis of a Three-Dimensional Cylindrical Model for a Polycrystalline Solar Cell. Journal of Applied Physics, 64, 5214-5219.

[15]   Leye, S.N., Diouf, A., Diao, A., Mbodji, S. and Sissoko, G. (2017) Temperature Effect on the Capacitance of the Bifacial Solar Cell Considering the Columnar Cylindrical Orientation. 33e Conférence Européenne sur l’énergie solaire (EU PVSEC 2017), Amsterdam, 25-29 September 2017, 78-81.

[16]   Kunst, M. and Sanders, A. (1992) Transport of Excess Carriers in Silicon Wafers. Semiconductor Science and Technology, 7, 51-59.

[17]   Mbodji, S., Dieng, M., Mbow, B., Barro, F.I. and Sissoko, G. (2010) Three Dimensional Simulated Modelling of Diffusion Capacitance of Polycrystalline Bifacial Silicon Solar Cell. Journal of Applied Science and Technology (JAST), 15, 109-114.

[18]   Green, M.A. and Keevers, M. (1995) Optical Properties of Intrinsic Silicon at 300 K. Progress in Photovoltaics, 3, 189-192.

[19]   Dugas, J. (1994) 3D Modelling of a Reverse Cell Made with Improved Multicrystalline Silicon Wafers. Solar Energy Materials and Solar Cells, 32, 71-88.

[20]   Mbodji, S., Maiga, A.S., Dieng, M., Wereme, A. and Sissoko, G. (2009) Renoval Charge Technic Applied to a Bifacial Solar Cell under Constant Magnetic Field. Global Journal of Pure and Applied Sciences, 15, 125-132.

[21]   Lilonga-Boyenga, N.D. and Sissoko, G. (2014) Illumination Level Effects on Microscopic and Macroscopic Parameters of a Bifacial Solar Cell. Energy and Power Engineering, 6, 25-36.

[22]   Ly, I., Ndiaye, M., Wade, M., Thiam, N., Gueye, S. and Sissoko, G. (2013) Concept of Recombination Velocity Sfcc at the Junction of a Bifacial Silicon Solar Cell, in Steady State, Initiating the Short-Circuit Condition. Research Journal of Applied Sciences, Engineering and Technology, 5, 203-208.

[23]   Xiao, C., Yu, X., Yang, D. and Que, D. (2014) Impact of Solar Irradiance Intensity and Temperature on the Performance of Compensated Crystalline Silicon Solar Cells. Solar Energy Materials and Solar Cells, 128, 427-434.

[24]   Zondag, H.A. (2008) Flat-Plate PV-Thermal Collectors and Systems: A Review. Renewable Sustainable Energy Reviews, 12, 891-959.

[25]   Cai, W., Chao, F., Long, T.J., Xiong, L.D., Fu, H.S. and Gang, X.Z. (2012) The Influence of Environment Temperatures on Single Crystalline and Polycrystalline Silicon Solar Cell Performance. Science China Physics, Mechanics and Astronomy, 55, 235-241.

[26]   Chander, S., Purohit, A., Sharma, A., Arvind, Nehra, S.P. and Dhaka, M.S. (2015) A Study on the Photovoltaic Parameters of Mono-Crystalline Silicon Solar Cell with Cell Temperature. Energy Reports, 1, 104-109.

[27]   Lammert, M.D. and Schwarts, R.J. (1977) The Integrated Back Contact Solar Cell: A Silicon Solar Cell for Use in Concentrated Sunlight. IEEE Transactions on Electron Devices, 24, 337-342.

[28]   Saran, A., Prasad, B., Chandril, S., Singh, S.P., Saxena, A.K., Pathak, M., Chahar, N. and Bhattacharya, S. (2013) Study of Temperature on Performance of c-Si Homojunction and a-Si/c-Si Heterojunction Solar Cells. International Journal of Renewable Energy Research, 3, 707-710.

[29]   Arora, N.D. and Hauser, J.R. (1982) Temperature Dependence of Silicon Solar Cell Characteristics. Solar Energy Materials, 6, 151-158.

[30]   Emery, K. and Osterwald, C. (1987) Measurement of Photovoltaic Device Current as a Function of Voltage, Temperature, Intensity and Spectrum. Solar Cells, 21, 313-327.

[31]   Tsuno, Y., Hishikawa, Y. and Kurokawa, K. (2005) Temperature and Irradiance Dependence of the I-V Curves of Various Kinds of Solar Cells. 15th International Photovoltaic Science & Engineering Conference, Shanghai, October 2005, 422-423.

[32]   Berthod, C., Strandberg, R., Yordanov, G.H., Beyer, H.G. and Odden, J.O. (2015) On the Variability of the Temperature Coefficients of mc-Si Solar Cells with Irradiance. Energy Procedia, 92, 2-9.