IJG  Vol.9 No.3 , March 2018
Computing Local Geoid Model Using DTM and GPS Geodetic Points. Case Study: Mejez El Bab-Tunisia
Different methods have been deployed to compute the geoid, the altimetry reference for surveying applications. One of their main goals is to allow the use of GPS (Global Positioning System) or GNSS heights, which are related to an ellipsoid and therefore must be corrected. Some of these methods are accurate but quite heavy as developed by [1], but one of them is easy to use while giving very good results in a local system: some mm for a 10 × 10 km2 area developed by [2] [3]. In our study, we have used software called “Géoide Program”, previously used at the CERN in Switzerland and set up by [4], which they complete this software allowing a parameterization of general data to provide results in a general system. Then, tests have shown the way to optimize computations without any loss of accuracy. For our computations we use gridded of geodetic heights, from Lambert or WGS 84 datum’s, DTM (Digital Terrain Model) and leveled GPS points. To obtain these results, components of the vertical deflection are computed for every point on the grid, deduced from the attraction exerted by the mass Model. Then, geodetic heights are computed by an incremental way from an arbitrary reference. Once the calculation is performed, the geodetic height of any point located in the modelled area can be interpolated. The variations of parameters (mainly size and increments of the DTM and of the modeled area, and ground density) have shown that they do not play a significant role although DTM must be large enough to take into account an important area around a selected zone. However, the choice of the levelled GPS points is primordial. We have performed tests with real data concerning Mejez El Bab zone, in north of Tunisia. Nevertheless, for a few hundreds of square kilometers area, and just by using a DTM and a few levelled GPS points, this method provides results that look extremely promising, at least for surveying activities, as it shows a good possibility to use GPS for coarse precision levelling, and as DTM are now widely available in many countries.
Cite this paper
Rebaï, N. , Zenned, O. , Trabelsi, H. and Achour, H. (2018) Computing Local Geoid Model Using DTM and GPS Geodetic Points. Case Study: Mejez El Bab-Tunisia. International Journal of Geosciences, 9, 161-178. doi: 10.4236/ijg.2018.93011.
[1]   Torgue, W. (1991) Geodesy. Second Edition, Walter de Gruyter, Berlin.

[2]   BELL, B. (1984) A Simulation of the Gravity Field around LEP. CERN, Geneva, 100.

[3]   Gervaise, J., Mayoud, M., Beutler, G. and Gurtner, W. (1985) Test of Global Positioning System (NAVSTAR SATELLITES) on the CERN-LEP Control Network. Joint Meeting FIG-Study Groups 5B and 5C on Inertial, Doppler and GPS Measurements for National and Engineering Surveys, Munich, 1-3 July 1985.

[4]   Comet, G. and Maillard, D. (1994) Détermination d'un géoide local par utilisation d'un MNT, Mémoire de Diplome d'Ingénieur. Ecole Supérieur des Géomètres et Topographes-France, 82.

[5]   Lacombe, H. and Costabel, P. (1990) La Figure de la Terre du XVIIIème siècle à l'ère spatial. Académie des Sciences.

[6]   Levallois, J.-J. (1970) Géodésie générale, tome III: Le champ de pesanteur-Eyrolles.

[7]   Heiskanen, W.A. and Moritz, H. (1967) Physical Geodesy. Institute of Physical Geodesy, Technical University, Graz.

[8]   DMA—Department of Defense Administration (1987) Geodetic Systeme 1984 Works. Its Definition and Relationships with Local Geodetic System—DMA TR B350.2, USA.

[9]   Gurtner, W. (1978) Das Geoid in der Schweizerland Institute für Geodasie und Photogrammetrie. Mitteilungen Nr 20, Zurich.

[10]   Delomenie, M. (1987) Calcul d'un géoide gravimétrique sur la France. BGI, IGN.

[11]   Duquenne, H., Zhiheng, J. and Sechaud, N. (1994) Nivellement par GPS, vers un géoide local centimétrique. Géomètre, 42-47.

[12]   Iang, Z. and Duquenne, H. (1995) Fast Integration for the Integrals of Stokes, Potential and Terrain Correction in Geoid Determination. 20th General Assembly of Europe Geophysical Society, Hamburg, April 1995, 23-25.

[13]   Jallouli, C. and Mickus, K. (2000) Regional Gravity Analysis of the Crustal Structure of Tunisia. Journal of African Earth Sciences, 30, 63-78.

[14]   Jallouli, C., Rebai, N., Turki, M.M. and Mickus, K. (2000) L’importance de la Gravimétrie en Géodésie; Géo-Top. Revue scientifique et technique; Office de la Topographie et de la Cartographie, 72.

[15]   Bolze, J. (1954) Ascension et percée des diapirs au Crétacé moyen dans les monts de Téboursouk. C.R. Somm. Soc. Géol. France, II, 303, 831.

[16]   Perthuisot, V. (1978) Dynamique et pétrogenèse des extrusions triasiques en Tunisie Septentrionale. Thèse de doctorat es-Sciences, Trav. Labo. Géol. (Ecole Normale Supérieure); Paris, 360 p.

[17]   Vila, J.M. and Charriere, A. (1993) Découverte d’Albien calcaire et de Trias resédimenté au Jebel Bou Jaber Ac. Sci. Paris, II, 316.

[18]   Hammami, M. (1999) Tectonique, Halocinèse et mise en place des minéralisations dans la zone des diapirs. Thèse de doctorat, Univ. Tunis II, FST, 183 p.

[19]   Zargouni, F. (1975) Etude géologique de la chaine de Lansarine (région Tébourba, Atlas tunisien). Thèse 3ème cycle, Univ. Paris and M. CIRIE., 86 p.

[20]   Ben Ayed, N. (1994) Les décrochements-chevauchements E-W et N-S convergents de la Tunisie septentrionale: Géométrie et essai de reconstitution des conditions de déformations. Actes des IVème Journées de l’Exploration pétrolière en Tunisie, 25-37.

[21]   El Ouardi, H., Rami, A. and Turki, M.M. (1999) Géodynamique des bassins crétacés d’une partie de l’Atlas tunisien septentrional. Géologie Méditerranéenne, 26, 203-216.

[22]   Chikhaoui, M. and Turki, M.M. (1995) Roles et importance de la fracturation méridienne dans les déformations crétacées et alpines de la zone des diapirs. African Earth Sciences, 21, 271-281.

[23]   Perthuisot, V. (1981) Diapirism in Northern Tunisia. Journal of Structural Geology, 3, 231-235.

[24]   Aoudjehane, M., Bouzenoune, A., Rouvier, H. and Thieberaz, J. (1992) Halocinèse et dispositifs d’extrusion du Trias de l’Atlas Saharien Oriental. Géologie Méditerranéenne, 4, 273-280.

[25]   Castany, G. (1956) Etude géologique de l’Atlas tunisien oriental. Thèse de doctorat Sciences, Ann. Mines et Géol. Tunisie; 8, 632p.

[26]   Chikhaoui, M. (1988) Succession Distension-Compression dans le sillon tunisien. Secteur de Nabeul-El Kef, Tunisie centre-nord. Role des extrusions triasiques précoces lord des serrages alpins. Thèse de doctorat, Univ. De Nice, 143 p.

[27]   Adil, S. (1993) Dynamique de Trias dans le nord de la Tunisie: Bassins en relais multiples de décrochement, magmatisme et implications minières. Thèse de doctorat, Univ. De Tunis II, FST, 284 p.

[28]   El Ouardi, H. and Turki, M.M. (1995) Tectonique salifère polyphasée dans la région de Mejez El Bab-Testour (Zone des domes, Tunisie septentrionale): Controle de la sédimentation méso-cénozoique. Géologie Méditerranéenne, 22, 73-84.

[29]   El Ouardi, H. (1996) Halocinèse et role des décrochements dans l’évolution géodynamique de la partie médiane de la zone des domes. Thèse de doctorat, Univ. Tunis II, FST, 242 p.

[30]   Chikhaoui, M., Hammami, M., Rabhi, M. and Turki, M.M. (1999) Tectonique synsédimentaire distensive dans le Jurassique du sillon tunisien. Exemple du Jurassique de Mjez El Bab. Notes du Service Géol., Tunisie, 43-48.

[31]   Chikhaoui, M. (2002) La zone des diapirs en Tunisie; cadre structural et évolution géodynamique de la sédimentation méso-cénosoique et géométrie des corps triasiques. Thèse de doctorat, Université Tunis El Manar, FST, 323.

[32]   Boucher, C. (1981) Définition des systèmes géodésiques utilisés en France-IGN, rapport technique SGNM/DEC, RT/G No. 7.

[33]   Zid, J. (1990) Le réseau général de nivellement de la Tunisie; Office de la Topographie et du Cadastre, direction de la Géodésie et des Travaux spéciaux, Tunis-Tunisie.

[34]   Slama, T. (2002) DEA Etude méthodologique pour la détermination d’un modèle numérique de terrain. Application à la région de Mejez El Bab, FST.

[35]   Achilli, V. and Baldi, P. (1982) Computations of Local Anomalies of the Vertical Deflections in Geodetic Network. Survey Review, 26, 327-335.

[36]   Tscherning, C.C. (1985) Geoid Modelling using Collocation in Scandinavia and Greenland. Manuscripta Geodetica, 10, 136-149.

[37]   Sechaud, N. (1993) Détermination d’un géoide local par géodésie intégrée-Diplome d’ingénieur; IGN, Décembre 1993.

[38]   Duquenne, H. and Sarrailh, M. (1996) Improvement of Gravemetric Geoid Determination in the French Alps. Finnish Geodetic Institute Report, No. 96, 71-76.

[39]   Corchete, V. (2010) The High-Resolution Gravimetric Geoid of Italy: ITG2009. Journal of African Earth Sciences, 58, 580-584.

[40]   Corchete, V., Chourak, M. and Khattach, D. (2005) The High Resolution Gravimetric Geoid of Iberia: IGG2005. Geophysical Journal International, 162, 676-684.

[41]   Nagy, D., Papp, G. and Benedek, J. (2000) The Gravitational Potential and Its Derivatives for the Prism. Journal of Geodesy, 74, 552-560.

[42]   Jiang, T. and Wang, Y.M. (2016) On the Spectral Combination of Satellite Gravity Model, Terrestrial and Airborne Gravity Data for Local Gravimetric Geoid Computation. Journal of Geodesy, 90, 1405-1418.

[43]   Mishra, U.N. and Ghosh, J.K. (2016) Development of a Gravimetric Geoid Model and a Comparative Study. Journal Geodesy and Cartography, 42, 75-84.

[44]   Nagy, D. and Fury, R.J. (1990) Local Geoid Computation from Gravity using the Fast Fourier Transform Technique. Bulletin Géodésique, 64, 283-294.

[45]   Arana, D., Camargo, P.O., Guimaraes and Gabriel, N. (2017) Hybrid Geoid Model: Theory and Application in Brazil. Anais da Academia Brasileira de Ciências, 89, 1943-1959.