CS  Vol.9 No.2 , February 2018
Development of a Solar Controller with MLI Control
This work presents the development of a solar regulator which manages the charge and discharge of a (lead) battery installed in a photovoltaic system in order to extend its lifetime. The regulator is controlled by a microcontroller (PIC16F877A) and protects the battery against overcharging, deep discharge, but also against temperature drifts. The operating principle is based on the control of a DC-DC converter by a rectangular signal MLI generated by the microcontroller. In addition to the protection function of the regulator, there is included a control and monitoring panel consisting of a visualization interface on which the system quantities can be observed. Thus, it will be given to the user to be able to act on the system. This display interface uses as a display an LCD screen and LEDs. Simulation results are presented to illustrate the operation of the proposed solar controller.
Cite this paper
Wade, M. , Gueye, M. , Sow, O. , Sow, D. , Dione, B. and Sissoko, G. (2018) Development of a Solar Controller with MLI Control. Circuits and Systems, 9, 22-40. doi: 10.4236/cs.2018.92003.
[1]   Usher, E.P. and Ross, M.M.D. (1998) Recommended Practices for Charge Controllers. Report IEA PVPS T3-05.

[2]   Koutroulis, E. and Kalaitzakis, K. (2004) Novel Battery Charging Regulation System for Photovoltaic Applications. Proceedings—Electric Power Applications, 151, 191-197.

[3]   Belarbi, M. (2015) Contribution à l’étude d’un générateur solaire pour site autonome, Université des Sciences et de la Technologie d’oran Mohamed Boudiaf, Algérie.

[4]   Merrouche, W., Tebibel, H. and Malek, A. (2012) Développement sous Proteus d’un régulateur basé sur un algorithme de charge efficace et sécurisée pour batteries au plomb dans un système photovoltaique. The 2nd International Seminar on New and Renewable Energies, Ghardaia, 15-17 Octobre 2012, 175-186.

[5]   Gold, S. (1997) A Pspice Macromodel for Lithium-Ion Batteries. Proceedings of the 12th Battery Conference, 9-15.

[6]   Houée, P. (2011) Une installation photovoltaique en site isolé, forum des technologies, Technologie 175.

[7]   Messikh, L., Chikhi, S., Chikhi, F. and Chergui, T. (2008) Mise au point d’un régulateur de charge/décharge de batterie avec seuils adaptatifs de tension pour les applications photovoltaiques. Revue des Energies Renouvelables, 11, 281-290.

[8]   Dione, B., Sow, O., Wade, M., Ly, I., Mbodji, S. and Sissoko, G. (2016) Experimental Process Us for Acquisition Automatic Features of I-V Properties and Temperature of the Solar Panel by Changing the Operating Point. Circuits and Systems, 7, 3984-4000.

[9]   Rufer, A. (2016) Conversion DC/DC, Ecole Polytechnique Fédérale de Lausanne (EPFL).

[10]   Texas Instruments (2016) LM35 Precision Centigrade Temperature Sensors.

[11]   Burr-Brown (1997) INA122 Single Supply, MicroPower Instrumentation Amplifier. Burr-Brown Corporation.

[12]   Sow, O., Diarisso, D., Mbodji, N.Z.A., Diallo, M.S., Diao, A., Gaye, I., Barro, F.I. and Sissoko, G. (2013) Experimental Device for Acquisition of Properties I-V and V (T) of the Solar by Automatic Change Operating Point. International Journal of Innovative Technology and Exploring Engineering, 2, 330-334.

[13]   Diarisso, D., Diallo, M.S., Diao, A., Sow, O., Gaye, I., Barro, F.I. and Sissoko, G. (2013) Development of Battery Charge/Discharge Regulator for Photovoltaic Systems. International Journal of Innovative Technology and Exploring Engineering, 2, 231-234.

[14]   Microchip Datasheet (1999) PIC 16F87x: 28/40 pin CMOS Flash Microcontrollers. Microchip Technology Inc., DS30292B.

[15]   Dunlop, J.P. (1997) Batteries and Charge Control in Stand-Alone Photovoltaic Systems: Fundamentals and Application. Sandia National Laboratories and Florida Solar Energy Center.

[16]   Ait Cheikh, M.S., Chirk Belhadj, M., Bassaid, M., Becherif, M. and Larbes, C. (2012) Simulation et réalisation d’un controleur de batterie solaire à base de PIC16F876. Revue des Energies Renouvelables.