AJAC  Vol.9 No.1 , January 2018
Optimizing Sampling, Sample Processing and Analysis Methods for Radon (222Rn) in Water by Liquid Scintillation Counting
Throughout the United States, laboratories use different sampling methods (“Direct Fill” vs. “Submerged Bottle” methods), sample preparations (“Simultaneous Drawing” vs. “Separate Drawing”), scintillators (“Mineral Oil” vs. “Opti-Fluor”), volume of water plus scintillator in the cocktail (“8 mL plus 8 mL” vs. “10 mL plus 10 mL”), and liquid scintillation counting assays (“Full Spectrum: 0 - 2000 keV” vs. “Region of Interest: 130 - 700 keV”) for analyzing radon (222Rn) in water. We compared these and few other variables on the recovery of radon from two “Proficiency Test (PT)” samples and four “Household Well Water” samples from Georgia. The “130 - 700 keV” assay had significantly higher radon recovery than the “0 - 2000 keV” assay. The “Direct Fill” sampling produced significantly lower radon recovery than the “Submerged Bottle” sampling. “Simultaneous Drawing” of both scintillator and water sample yielded higher radon recovery than “Separate Drawing”. Air bubble in the samples resulted in significant loss of radon gas; and such loss became greater as the air bubble was larger. A “10 mL scintillator + 10 sample” combination appeared better than “8 mL scintillator + 8 mL sample”. Mixing scintillator and sample in the laboratory, when compared with doing it on-site, was found superior for better results and practicality of testing radon in private well waters. “Mineral Oil” scintillator provided higher radon activity than “Opti-Fluor”. However, in 10 consecutive measurements of the two proficiency test (PT) samples at 60 days interval (i.e., with full ingrowing), “Mineral Oil” overestimated the radon activity compared to the predicted/assigned value in most cases, whereas “Opti-Fluor” invariably produced results close to the predicted/assigned value. There were noticeable temporal variations in both radon and uranium concentrations in the study wells; nevertheless, uranium and radon concentrations had good positive correlation. Despite this, the use of uranium concentration over 30 ppb (the MCL of uranium in drinking water) as a trigger for recommending test for radon in well water remains questionable because there may be the safe level of uranium but unsafe level of radon in a well and vice versa.
Cite this paper
Saha, U. , Kitto, M. , Lynch, D. , Bangar, A. , Turner, P. , Dean, G. and Sonon, L. (2018) Optimizing Sampling, Sample Processing and Analysis Methods for Radon (222Rn) in Water by Liquid Scintillation Counting. American Journal of Analytical Chemistry, 9, 25-47. doi: 10.4236/ajac.2018.91003.
[1]   Cline, W., Adamovitz, S., Blackman, C. and Kahn, B. (1983) Radium and Uranium Concentrations in Georgia Community Water Systems. Health Physics, 44, 1-12.

[2]   Hess, C.T., Weiffenbach, C.V. and Norton, S.A. (1983) Environmental Radon and Cancer Correlations in Maine. Health Physics, 45, 339-348.

[3]   Zapecza, O.S. and Szabo, Z. (1988) Natural Radioactivity in Ground Water—A Review in National Water Summary 1986, 50-57. Hydrologic Events and Ground-Water Quality, Water-Supply Paper 2325, U.S. Geological Survey, Reston, VA.

[4]   Coker, G. and Olive, R. (1989) Radionuclide Concentrations from Selected Aquifers in Georgia. U.S. Environmental Protection Agency Region IV Report, 21 p.

[5]   Stone, P.A., Devlin, R.J., Allen, B.P. and Crawford, B.D. (2002) Radionuclides in South Carolina Well Water. Proceedings of the 10th Annual David S. Snipes/Clemson Hydrogeology Symposium, April 18 2002, 32.

[6]   Albertson, P.N. (2003) Naturally Occurring Radionuclides in Georgia Water Supplies: Implications for Community Water System. In: Hatcher, K.J., Ed., Proceedings of the 2003 Georgia Water Resources Conference, Athens, Georgia.

[7]   World Health Organization (WHO) (2004) Guidelines for Drinking Water Quality. 3rd Edition, World Health Organization, Geneva, Switzerland.

[8]   International Commission on Radiological Protection (2007) Publication 100: Human Alimentary Tract Model for Radiological Protection. Elsevier Sciences, Oxford, United Kingdom.

[9]   Wrenn, M.E., Durbin, P.W., Howard, B., Lipsztein, J., Rundo, J. and Still, E.T. (1985) Metabolism of Ingested U and Ra. Health Physics, 48, 601-633.

[10]   Zamora, M.L., Tracy, B.L., Zielinski, J.M., Meyerhof, D.P. and Moss, M.A. (1998) Chronic Ingestion of Uranium in Drinking Water: A Study of Kidney Bioeffects in Humans. Toxicological Science, 43, 68-77.

[11]   Zamora, M.L., Zielinski, J.M., Moodie, G.B., Falcomer, R.A., Hunt, W.C. and Capello, K. (2009) Uranium in Drinking Water: Renal Effects of Long-Term Ingestion by an Aboriginal Community. Archives of Environmental & Occupational Health, 64, 228-241.

[12]   Hopke, P.K., Borak, T.B., Doull, J., Cleaver, J.E., Eckerman, K.F. and Gundersen, C.S. (2000) Health Risks Due to Radon in Drinking Water. Environmental Science and Technology, 34, 921-926.

[13]   Darby, S., Hill, D., Auvinen, A., Barros-Dios, J.M., Baysson, H., Bochicchio, F., Deo, H., Falk, R., Forastiere, F., Hakama, M., Heid, I., Kreienbrock, L., Kreuzer, M., Lagarde, F., Mkelinen, I., Muirhead, C., Oberaigner, W., Pershagen, G., Ruano-Ravina, A., Ruosteenoja, E., Rosario, A.S., Tirmarche, M., Tomsek, L., Whitley, E., Wichmann, H.E. and Doll, R. (2005) Radon in Homes and Risk of Lung Cancer: Collaborative Analysis of Individual Data from 13 European Case-Control Studies. British Medical Journal, 330, 223-226.

[14]   National Academy of Science (NAS) (1999) National Academy of Science. Report of the Committee on Risk Assessment of Exposure to Radon in Drinking Water. Board on Radiation Effects Research, Commission on Life Sciences, National Research Council, National Academy Press, Washington, DC.

[15]   United States Environmental Protection Agency (USEPA) (2012) A Citizen’s Guide to Radon, the Guide to Protecting, Yourself and Your Family from Radon.
EPA402/ K-12/002|May2012|www.epa.gov/radon.

[16]   Perry, J. (2013) Health Consultation—June 30, 2013: Naturally-Occurring Uranium in Private Well Water, Juliette, Monroe County, Georgia. Chemical Hazards Program, Georgia Department of Public Health, Atlanta, GA.

[17]   Whittaker, E.L., Akridge, J.D. and Giovano, J. (1989) Two Test Procedures for Radon in Drinking Water: Inter-laboratory Collaborative Study. U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, NV. EPA 600/2-87/082.

[18]   New York State Department of Health (NYSDOH) (2007) Environmental Laboratory Approval Program.

[19]   Kitto, M.E., Fielman, E.M., Haines, D.K., Menia, A. and Bari, A. (2008) Performance of a Commercial Radon-in-Water Measurement Kit. Journal of Environmental Radioactivity, 99, 1255-1257.

[20]   Kitto, M.E., Menia, T.A., Bari, A., Fielman, E.M. and Haines, D.K. (2008) Development and Intercomparison of a Reusable Radon-in-Water Standard. Radiation Measurements, 45, 231-233.

[21]   United States Environmental Protection Agency (USEPA) (1994) Method 200.7 Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Rev. 4.4. U.S. Environmental Protection Agency, Cincinnati, Ohio.

[22]   Passo Jr., C.J. and Floeckher, J.M. (1991) The LSC Approach to Radon Counting in Air and Water. In: Ross, H., Noakes, J.E. and Spaulding, J.D., Eds., Liquid Scintillation Counting and Organic Scintillators, Lewis Publishers, Inc., MI, USA, 375-384.