NS  Vol.3 No.10 , October 2011
Energy and mass changes of the Eurasian permafrost regions by multi-satellite and in-situ measurements
ABSTRACT
We investigate changes in total water equivalent mass, land-surface temperature and atmospheric CO2 by satellite-based measurements from August 2002 through December 2008. Our region of interest spans 75 to 165°E and 50 to 80oN centered on the Lena River watershed as a physical reference frame. We find energy and mass changes on the continuous and discontinuous permafrost zones indicating: 1) Arctic uplands such as the Siberian Plateau show strongly positive water equivalent mass and strongly negative land-surface temperature gradients during May months. 2) Arctic lowlands such as the thaw-lake regions of Kolyma, Lena Delta, and Taymyr show strongly negative water equivalent mass and strongly positive land-surface temperature gradients during September months. 3) Areas with strongly positive water equivalent mass and negative land-surface temperature gradients during May months have weakly positive CO2 gradients 4) Areas with strongly negative water equivalent mass and strongly positive land-surface temperature gradients during September months have strongly positive CO2 gradients. This indicates that continuous and discontinuous permafrost ecosystem responses are correlated in phase with energy and mass changes over the period. The Laptev and East Siberia Sea have increasing trends of CO2 atmosphere concentration 2.23 ± 0.15 ppm/yr and 2.40 ± 0.21 ppm/yr, respectively. Increasing trends and strong positive gradients of CO2atmosphere concentration during Aprils-Mays are evidence that the Arctic Ocean is a strong emitter of CO2 during springtime lead formation. We hypnotize that the increasing CO2 from land and ocean regions is from permafrost thawing and degradation and ecosystem microbial activity.

Cite this paper
Muskett, R. and Romanovsky, V. (2011) Energy and mass changes of the Eurasian permafrost regions by multi-satellite and in-situ measurements. Natural Science, 3, 827-836. doi: 10.4236/ns.2011.310108.
References
[1]   Saltzman, B. (1983) The theory of climate. Advances in geophysics 25. Academic Press, New York.

[2]   Flanner, M.G., Shell, K.M., Barlage, M., Perovich, D.K. and Tschudi, M.A. (2011) Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geoscience, 4, 151-155. doi:10.1038/ngeo1062

[3]   Kleidon, A. (2008) Entropy production by evapotranspiration and its geographic variation. Soil & Water Ressources, 3 (Special Issue 1), S89-S94.

[4]   Zhang, X., Friedl, A.M., Schaaf, B.C. and Strahler, A.H. (2004) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 10, 1133-1145. doi:10.1111/j.1529-8817.2003.00784.x

[5]   Romanovsky, V.E., Drozdov, D.S., Oberman, N.G. Malkova, G.V., Kholodov, A.L., Marchenko, S.S., Moskalenko, N.G., Sergeev, D.O., Ukraintseva, N.G., Abramov, A.A., Gilichinsky, D.A. and Vasiliev, A.A. (2010) Thermal state of permafrost in Russia. Permafrost & Periglacial Processes, 21, 136-155. doi:10.1002/ppp.683

[6]   Muskett, R.R. and Romanovsky, V.E. (2009) Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements. Environmental Research Letters, 4.

[7]   Muskett, R.R. and Romanovsky, V.E. (2011) Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements. Remote Sensing Journal, 3, 378-397. doi:10.3390/rs3020378

[8]   Schuur, E.A.G., Vogel, J.G., Crummer, K.G., Lee, H.L., James, O., Sickman, J.O. and Osterkamp, T.E. (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-560. doi:10.1038/nature08031

[9]   Walter, K.M., Edwards, M.E., Grosse, G., Zimov, S.A. and Chapin III, F.S. (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science, 318, 633-636. doi:10.1126/science.1142924

[10]   Grosse, G., Marchenko, S., Romanovsky, V., Wickland, K.P., French, N., Waldrop, M., Bourgeau-Chavez, L., Striegl, R., Harden, J., Turetsky, M., McGuire, A.D., Camill, P., Tarnocai, C., Frolking, S., Schuur, E. and Jorgenson, T. (2011) Vulnerability of high latitude soil organic carbon in North America to disturbance. Journal Geophysical Research, 116, G00K06. doi:10.1029/2010JG001507

[11]   Berry, P.A.M., Smith, R.G., Freeman, J.A. and Benveniste, J. (2008) Towards a new global digital elevation model. In: Sideris, M.G., Ed., Observing Our Changing Earth, 133, Part 2, International Association of Geodesy Symposia 2008, Springer-Verlag, Berlin,

[12]   Smith, R.G., Berry, P.A.M. and Benveniste, J. (2007) Representation of rivers and lakes within the forthcoming ACE2 Global Digital Elevation Model. In: ESA 2nd Space for Hydrology Workshop, Geneva, 12-14 November 2007.

[13]   Wan, Z. (2008) New refinements and validation of MODIS land-surface temperature/emissivity products. Remote Sensing Environment, 112, 59-74. doi:10.1016/j.rse.2006.06.026

[14]   Coll, C., Wan, Z. and Galve, G.M. (2009) Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. Journal Geophysical Research, 114, D20102. doi:10.1029/2009JD012038

[15]   Wang, W., Liang, S., Meyers, T. (2008) Validating MODIS land surface temperature products using long- term nighttime ground measurements. Remote Sensing Environment, 112, 623-635. doi:10.1016/j.rse.2007.05.024

[16]   Hachem, S., Duguay, C.R. and Allard, M. (2011) Comparison of MODIS-derived land surface temperatures with near-surface soil and air temperature measurements in the continuous permafrost terrain. The Cryosphere Discussions, 5, 1583-1625. doi:10.5194/tcd-5-1583-2011

[17]   Wahr, J., Molenaar, M. and Bryan, F. (1998) Time variability of the Earth’s gravity field: Hydrologic and oceanic effects and their possible detection using GRACE. Journal Geophysical Research, 103, 30205-30229. doi:10.1029/98JB02844

[18]   Tapley, B.D., Bettadpur, S., Watkins, M. and Reigber, C. (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31, L09607. doi:10.1029/2004GL019920

[19]   Quinn, K.J. and Ponte, R.M. (2010) Uncertainty in ocean mass trends from GRACE. Geophysics Journal International, 181, 762-768.

[20]   Zenner, L., Gruber, T., J?ggi, A. and Beutler, G. (2010) Propagation of atmospheric model errors to gravity potential harmonics—Impact on GRACE de-aliasing. Geophysics Journal International, 182, 797-807. doi:10.1111/j.1365-246X.2010.04669.x

[21]   Peltier, W.R. (2004) Global glacial isostasy and the surface of the Ice-Age Earth: The ICE-5G (VM2) model and GRACE. Annual Reviews Earth & Planetary Science, 32, 111-149. doi:10.1146/annurev.earth.32.082503.144359

[22]   Paulson, A., Zhong, S. and Wahr, J. (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophysics. Journal International, 171, 497-508. doi:10.1111/j.1365-246X.2007.03556.x

[23]   Barkley, M.P., Monks, P.S. and Engelen, R.J. (2006) Comparison of SCIAMACHY and AIRS C02 measurements over North America during the summer and autumn of 2003. Geophysical Research Letters, 33, L20805. doi:10.1029/2006GL026807

[24]   Xiong, X., Barnet, C., Maddy, E., Sweeney, C., Liu, X., Zhou, L. and Goldberg, M. (2008) Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). Journal Geophysical Research, 113, G00A01. doi:10.1029/2007JG000500

[25]   Chahine, M., Chen, L., Dimotakis, P., Jiang, X., Li, Q.B., Olsen, E., Pagano, T., Randerson, J. and Yung, Y. (2008) Satellite remote sounding of middle tropospheric CO2. Geophysical Research Letters, 35, L17807. doi:10.1029/2008GL035022

[26]   Neelin, J.D., Lintner, B.R., Tian, B., Li, Q., Zhang, L., Patra, P.K., Chahine, M.T. and Stechmann, S.N. (2010) Long tails in deep columns of natural and anthropogenic tropospheric tracers. Geophysical Research Letters, 37, L05804. doi:10.1029/2009GL041726

[27]   Yang, D.Q., Kane, D., Zhang, Z., Legates, D. and Goodison, B. (2005) Bias-corrections of long-term (1973-2004) daily precipitation data over the northern regions. Geophysical Research Letters, 32, L19501. doi:10.1029/2005GL024057

[28]   Scales, J.A., Smith, M.L. and Treitel, S. (2001) Introductory inverse theory. Samizdat Press, Golden.

[29]   Brockwell P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. 2nd Edition, Springer-Verlag, New York. doi:10.1007/978-1-4419-0320-4

[30]   Wackernagel, H. (2003) Multivariate geostatistics: An Introduction with Applications. 3rd Edition, Springer, New York.

[31]   Sandwell, D. T. (1987) Biharmonic spline interpotation of GOES-3 and SEASAT altimeter data. Geophysical Research Letters, 14, 139-142. doi:10.1029/GL014i002p00139

[32]   Sandwell, D.T. and Smith, W.H.F. (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. Journal Geophysical Research, 114, B01411. doi:10.1029/2008JB006008

[33]   Wessel, P. and Bercovici, D. (1998) Interpolation with splines in tension: A Green’s function approach. Mathematical Geology, 30, 77-93. doi:10.1023/A:1021713421882

[34]   Wessel, P. (2009) A general-purpose Green’s function-based interpolator. Computers & Geoscience, 35, 1247-1254. doi:10.1016/j.cageo.2008.08.012

[35]   Yang, D., Kane, D., Hinzman, L.D., Zhang, X., Zhang T. and Ye, H. (2002) Siberian Lena River hydrologic regime and recent changes. Journal Geophysical Research, 107, 4694. doi:10.1029/2002JD002542

[36]   Yang, D.Q., Ye, B.S. and Shiklomanov, A. (2004) Stream flow changes over Siberian Yenisei River Basin. Journal Hydrology, 296, 59-80. doi:10.1016/j.jhydrol.2004.03.017

[37]   Van Huissteden, J., Maximov, T.C. and Dolman, A.J. (2011) High methane flux from an arctic floodplain (Indigirka lowlands, Eastern Siberia). Journal Geophysical Research, 110, G02002.

[38]   Van Huissteden, J., Berrittella, C., Parmentier, F.J.W., Mi, Y., Maximov, T.C and Dolman, A.J. (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nature Climate Change, 1, 119-123. doi:10.1038/nclimate1101

[39]   Muskett, R.R. (2011) Non-stationary drivers of polar sea ice area. Natural Science, 3, 351-368. doi:10.4236/ns.2011.35047

[40]   Anders, E.L., Guest, P.S., Persson, P.O.G., Fairall, C.W., Horst, T.W., Moritz, R.E. and Semmer, S.R. (2002) Near-surface water vapor over polar sea ice is always near ice saturation. Journal Geophysical Research, 107, 8033. doi:10.1029/2000JC000411

[41]   Shakhova, N., Semiltov, I., Salyuk, A., Yusupov, V., Cosmach, D. and Gustafsson, ?. (2009) Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Science, 327, 1246-1250. doi:10.1126/science.1182221

[42]   Kalabin, A.I. (1973) Scientific-procedural principles of investigation and the main features of the hydrogeology of northern countries (exemplified by northeastern USSR). In: Sanger, F.J. and Hyde, P.J., Eds., USSR Contribution—Permafrost, 2nd International Conference, National Academy of Sciences, Washington, July 13-28 1973.

[43]   Smith, L.C., Sheng, Y., MacDonald, G.M. and Hinzman, L.D. (2005) Disappearing ARCTIC LAkes. Science, 308, 1429. doi:10.1126/science.1108142

[44]   Yoshikawa, K. and Hinzeman, L.D. (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost & Periglacial Processess, 14, 151-160. doi:10.1002/ppp.451

[45]   Jorgenson, MT., Romanovsky, V., Harden, J., Shur, Y., O’Donnell, J., Shuur, E.A.G., Kaneveskiy, M. and Marchenko, S. (2010) Resilience and vulnerability of permafrost to climate change. Canadian Journal Forestry Research, 40, 1219-1236. doi:10.1139/X10-060

[46]   Bloom, A.A., Palmer, P.L., Fraser, A., Reay, D.S. and Frankerberg, C. (2010) Large-scale controls of mathanogenesis inferred from methane and gravity data. Science, 327, 322-325. doi:10.1126/science.1175176

 
 
Top