Statistical Wave Equation for Nonrelativistic Rigid Body Motions
ABSTRACT
In this work, the general nonrelativistic classical statistical theory presented in an earlier paper (J. Mod. Phys. 8, 786 (2017)) is applied in detail to the Euler angle and center-of-mass coordinates of an extended rigid body with arbitrary distributions of mass and electric charge. Results include the following: 1) The statistical theory spin angular momentum operators are independent of the body’s morphology; 2) These operators obey the usual quantum commutation rules in a non-rotating center-of-mass (CM) reference frame, but left-handed rules in a rotating body-fixed CM frame; 3) Physical boundary conditions on the Euler angle wavefunctions restrict all mixed spin wavefunctions to a superposition of half-odd-integer spin eigenstates only, or integer spin eigenstates only; 4) Spin s eigenfunctions are also Hamiltonian eigenfuctions only if at least two of the body’s principal moments of inertia are equal; 5) For a spin s body with nonzero charge density in a magnetic field, the theory automatically yields 2s+1 coupled wave equations, valid for any gyromagnetic ratio; and 6) For spin 1/2 the two coupled equations become a Pauli-Schr&ouml;dinger equation, with the Pauli matrices appearing automatically in the interaction Hamiltonian.
Cite this paper
Goedecke, G. (2017) Statistical Wave Equation for Nonrelativistic Rigid Body Motions. Journal of Modern Physics, 8, 1911-1932. doi: 10.4236/jmp.2017.812114.
References
[1]   Goedecke, G. (2017) Journal of Modern Physics, 8, 786-807.
https://doi.org/10.4236/jmp.2017.85050

[2]   Bopp, F. and Haag, R. (1950) Zeitschrift für Naturforschung, 5a, 644.

[3]   Nyborg, P. (1962) Nuovo Cimento, 23, 47.
https://doi.org/10.1007/BF02733541

[4]   Corben, H.C. (1968) Classical and Quantum Theories of Spinning Particles. Holden-Day, San Francisco.

[5]   De la Peña-Auerbach, L. (1971) Journal of Mathematical Physics, 12, 453.
https://doi.org/10.1063/1.1665609

[6]   Young, R. (1976) American Journal of Physics, 44, 581.
https://doi.org/10.1119/1.10383

[7]   Barut, A. and Bracken, A. (1981) Physical Review D, 23, 2454.
https://doi.org/10.1103/PhysRevD.23.2454

[8]   Barut, A. and Bracken, A. (1981) Physical Review D, 24, 3333.
https://doi.org/10.1103/PhysRevD.24.3333

[9]   Jáuregi, R. and de la Pe ñ a, L. (1981) Physics Letters A, 86, 280.

[10]   Barut, A. and Zanghi, N. (1984) Physical Review Letters, 52, 2009.
https://doi.org/10.1103/PhysRevLett.52.2009

[11]   Barut, A., Bozic, M. and Maric, Z. (1992) Annals of Physics, 214, 53.

[12]   Arsenovic, D., Barut, A., Maric, Z. and Bozic, M. (1995) Nuovo Cimento B, 110, 163.
https://doi.org/10.1007/BF02741499

[13]   Griffiths, D. (2005) Introduction to Quantum Mechanics. 2nd Edition, Prentice-Hall, London.

[15]   Arfken, G. (1985) Mathematical Methods for Physicists. 3rd Edition, Academic Press.

[16]   Lichnerowicz, A. (1962) Elements of Tensor Calculus. Methuen, London.

[18]   Mathews, J. and Walker, R. (1970) Mathematical Methods of Physics. 2nd Edition, W. A. Benjamin, New York.

[19]   Shankar, R. (1994) Principles of Quantum Mechanics. 2nd Edition, Springer, New York.
https://doi.org/10.1007/978-1-4757-0576-8

[20]   Merzbacher, E. (1962) American Journal of Physics, 30, 237.
https://doi.org/10.1119/1.1941984