OJAppS  Vol.7 No.10 , October 2017
Modeling and Characterization of Vegetation, Aquatic and Mineral Surfaces Using the Theory of Plausible and Paradoxical Reasoning from Satellite Images: Case of the Toumodi-Yamoussoukro-Tiébissou Zone in V Baoulé (Côte d’Ivoire)
ABSTRACT
In this paper, the theory of plausible and paradoxical reasoning of Dezert- Smarandache (DSmT) is used to take into account the paradoxical charac-ter through the intersections of vegetation, aquatic and mineral surfaces. In order to do this, we developed a classification model of pixels by aggregating information using the DSmT theory based on the PCR5 rule using the ∩NDVI, ∩MNDWI and ∩NDBaI spectral indices obtained from the ASTER satellite images. On the qualitative level, the model produced three simple classes for certain knowledge (E, V, M) and eight composite classes including two union classes characterizing partial ignorance ({E,V}, {M,V}) and six classes of intersection of which three classes of simple intersection (E∩V, M∩V, E∩M) and three classes of composite intersection (E∩{M,V}, M∩{E,V}, V∩{E,M}), which represent paradoxes. This model was validated with an average rate of 93.34% for the well-classified pixels and a compliance rate of the entities in the field of 96.37%. Thus, the model 1 retained provides 84.98% for the simple classes against 15.02% for the composite classes.
Cite this paper
Okaingni, J. , Ouattara, S. , Kouassi, A. , Vangah, W. , Koffi, A. and Clement, A. (2017) Modeling and Characterization of Vegetation, Aquatic and Mineral Surfaces Using the Theory of Plausible and Paradoxical Reasoning from Satellite Images: Case of the Toumodi-Yamoussoukro-Tiébissou Zone in V Baoulé (Côte d’Ivoire). Open Journal of Applied Sciences, 7, 520-536. doi: 10.4236/ojapps.2017.710038.
References
[1]   Abbas, N. (2009) Développement de modèles de fusion et de classification contextuelle d’images satellitaires par la théorie de l’évidence et la théorie du raisonnement plausible et paradoxal. [Development of Fusion Models and Contextual Classification of Satellite Images by the theory of Evidence and the Theory of Plausible and Paradoxical Reasoning.] Thesis of Magister in Signal and Image Processing, USTHB, Alger, 76 p.

[2]   Okaingni, J.-C., Kouamé, K.F. and Martin, A. (2010) Mapping Breastplates in Volcano-Sedimentary Area of Anikro-kadiokro (Ivory Coast) Using the Dempster-Shafer Theory of Evidence. Revue Télédétection, 9, 19-32.

[3]   Youanta, M., Kouamé, K.F., Koudou, A., Adja, M.G., Baka, D., Lasm, T., De Lasme, O., Jourda, J.P. and Biémi, J. (2014) Apport de la Cartographie Lithostructurale par Imagerie Satellitaire Landsat 7 à la Connaissance des Aquifères du Socle Précambrien de la Région de Bondoukou (Nord-Est de la Côte D’ivoire). [Contribution of Lithostructural Mapping by Landsat 7 Satellite Imagery to the Knowledge of the Aquifers of the Precambrian Base of the Bondoukou Region (Northeast of Côte d’Ivoire).] International Journal of Innovation and Applied Studies, 7, 892-910.

[4]   Okaingni, J.-C., Ouattara, S., Kouassi, A.F., Koné, A., Vangah, W.J. and Clement, A. (2017) Application of the Dempster-Shafer Theory to the Classification of Pixels from Aster Satellite Images and Spectral Indices. Journal of Applied Mathematics and Physics, 5, 1462-1477.
https://doi.org/10.4236/jamp.2017.57120

[5]   Chen, X.L., Zhao, H.M., Li, P.X. and Yin, Z.Y. (2006) Remote Sensing Image Based on Analysis of the Relationship between Urban Heat Island and Land Use/Cover Changes. Remote Sensing of Environment, 104, 133-146.
https://doi.org/10.1016/j.rse.2005.11.016

[6]   Uddin, S., Al Ghadban, A.N., Al Dousari, A., Al Murad, M. and Al Shamroukh, D. (2010) A Remote Sensing Classification for Land-Cover Changes and Micro-Climate in Kuwait. International Journal of Sustainable Development and Planning, 5, 367-377.
https://doi.org/10.2495/SDP-V5-N4-367-377

[7]   Smarandache, F. and Dezert, J. (2004) Advances and Application of DSmT for Information Fusion. American Research Press, Champaign, IL, 418 p.

[8]   Dezert, J. and Smarandache, F. (2003) Partial Ordering of Hyper-Powersets and Matrix Representation of Belief Functions within DSmT. Proceedings of 6th International Conference on Information Fusion, Cairns, 8-11 July 2003, 1230-1238.
https://doi.org/10.1109/ICIF.2003.177378

[9]   Dedekind, R. (1897) Über Zerlegungen von Zahlen durch ihre grössten gemeinsammen Teiler. In: May, K., Ed., Gesammelte Werke Bd.1, Mohr Siebeck, Heidelberg, 103-148.

[10]   Lefèvre, E. (2012) Fonctions de croyance: de la théorie à la pratique. Habilitation à diriger des recherches en genie informatique et Automatique. Ecole Doctorale Sciences pour l’Ingenieur. [Functions of Belief: From Theory to Practice. Authorization to Direct Re-Searches in Computer and Automated Engineering.] University of Artois, Lille-Nord of France, 151 p.

[11]   Lowrance, J.D., Strat, T.M., Wesley, L.P., Garvey, T.D., Ruspini, E.H. and Wilkins, D.E. (1991) The Theory, Implementation and Practice of Evidential Reasoning. SRI Project 5701 Final Report, SRI, Palo Alto.

[12]   Djiknavorian, P. (2008) Fusion d’informations dans un cadre de raisonnement de Dezert-Smarandache appliquée sur des rapports de capteurs ESM sous le STANAG 1241. [Fusion of Information in a Dezert-Smarandache Reasoning Framework Applied to ESM Sensor Reports under STANAG 1241.] Master’s Thesis in Electrical Engineering, University of Laval, Québec, 235 p.

[13]   Smarandache, F. and Dezert, J. (2006) Advances and Applications of DSmT for Infor-mation Fusion. American Research Press, Vol. 2, 442 p.

[14]   Florea, M.C., Dézert, J., Valin, P., Smarandache, F. and Jousselme, A.-L. (2006) Adaptive Combination Rule and Proportional Conflict Redistribution Rule for Information Fusion. COGIS 2006 Conference, Paris, March 2006.
http://www.see.asso.fr/cogis2006/pages/programme.htm

[15]   Xu, H.Q. (2006) Modification of Normalized Difference Water Index (MNDWI) to En-hance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27, 3025-3033.
https://doi.org/10.1080/01431160600589179

[16]   Zhao, H.M. and Chen, X.L. (2005) Use of Normalized Difference Bareness Index in Quickly Mapping Bare Areas from TM/ETM+. International Geoscience and Remote Sensing Symposium, Seoul, 25-29 July 1973, Vol. 3, 1666-1668.

[17]   Martin, A., Laanaya, H. and Arnold-Bos, A. (2006) Evaluation for Uncertain Image Clas-sification and Segmentation. Pattern Recognition, 39, 1987-1995.

 
 
Top