WJET  Vol.5 No.4 B , October 2017
Aerodynamics and Flight Dynamics of Free-Falling Ash Seeds
Samaras or winged seeds spread themselves by wind. Ash seed, unlike other samaras, has a high aspect ratio wing which can generate enough lift force to slow down descent by rotating about the vertical axis and spinning around its wing span axis simultaneously. This unique kinematics and inherent fluid mechanism are definitely of great interest. Detailed kinematics of free falling ash seeds were measured using high-speed cameras, then corresponding aerodynamic forces and moments were calculated employing computational fluid dynamics. The results show that both rotating and spinning directions are in the same side and the spinning angular velocity is about 6 times of rotating speed. The terminal descending velocity and cone angles are similar to other samaras. Analysis of the forces and moments shows that the lift is enough to balance the weight and the vertical rotation results from a processional motion of total angular moment because the spin-cycle-averaged aer-odynamic moment is perpendicular to the total angular moment and can only change its direction but maintain its magnitude, which is very similar to a spinning top in processional motion except that the total angular moment of ash seed is not along the spin axis but almost normal to it. The flow structures show that both leading and trailing edge vortices contribute to lift generation and the spanwise spinning results in an augmentation of the lift, implying that ash seeds with high aspect ratio wing may evolve in a different way in utilizing fluid mechanisms to facilitate dispersal.
Cite this paper
Fang, R. , Zhang, Y. and Liu, Y. (2017) Aerodynamics and Flight Dynamics of Free-Falling Ash Seeds. World Journal of Engineering and Technology, 5, 105-116. doi: 10.4236/wjet.2017.54B012.
[1]   Greene, D.F. and Johnson, E.A. (1990) The Aerodynamics of Plumed Seeds. Functionas Ecology, 4, 117-125. https://doi.org/10.2307/2389661

[2]   Nathan, R. (2006) Long-Distance Dispersal of Plants. Science, 313, 786-788. https://doi.org/10.1126/science.1124975

[3]   Azuma, A. and Okuno, Y. (1987) Flight of a Samara, Alsomitra macrocarpa. Journal of Theoretical Biology, 129, 263-274. https://doi.org/10.1016/S0022-5193(87)80001-2

[4]   Lentink, D., Dickson, W.B., van Leeuwen, J.L. and Dickinson, M.H. (2009) Leading-Edge Vortices Elevate Lift of Autorotating Plant Seeds. Science, 324, 1438-1440. https://doi.org/10.1126/science.1174196

[5]   Sirohi, J. (2013) Microflyers: Inspiration from Nature. Proceedings of SPIE—The International Society for Optical Engineering, 8686, 1-15. https://doi.org/10.1117/12.2011783

[6]   Azuma, A. and Yasuda, K. (1989) Flight Performance of Rotary Seeds. Journal of Theoretical Biology, 138, 23-53. https://doi.org/10.1016/S0022-5193(89)80176-6

[7]   Yasuda, K. and Azuma, A. (1997) The Autorotation Boundary in the Flight of Samaras. Journal of Theoretical Biology, 185, 313-320. https://doi.org/10.1006/jtbi.1996.0299

[8]   Peroni, P.A. (1994) Seed Size and Dispersal Potential of Acer Rubrum (Aceraceae) Samaras Produced by Populations in Early and Late Successional Environments. American Journal of Botany, 81, 1428-1434. https://doi.org/10.2307/2445316

[9]   Greene, D.F. and Johnson, E.A. (1993) Seed Mass and Dispersal Capacity in Wind-Dispersal Diaspores. Oikos, 67, 69-74. https://doi.org/10.2307/3545096

[10]   Salcedo, E., Treviño, C., Vargas, R.O. and Martínez-Suástegui, L. (2013) Stereoscopic Particle Image Velocimetry Measurements of the Three-Dimensional Flow Field of a Descending Autorotating Mahogany seed (Swietenia macrophylla). The Journal of Experimental Biology, 216, 2017-2030. https://doi.org/10.1242/jeb.085407

[11]   Ellington, C.P., van den Berg, C., Willmott, A.P. and Thomas, A.L.R. (1996) Leading-Edge Vortices in Insect Flight. Nature, 384, 626-630. https://doi.org/10.1038/384626a0

[12]   Birch, J.M. (2004) Force Production and Flow Structure of the Leading Edge Vortex on Flapping Wings at High and Low Reynolds Numbers. Journal of Experimental Biology, 207, 1063-1072. https://doi.org/10.1242/jeb.00848

[13]   Rogers, S.E., Kwak, D. and Kiris, C. (1991) Stable and Unstable Solutions of the Incompressible Navier-Stokes Equations. AIAA Journal, 29, 603-610. https://doi.org/10.2514/3.10627

[14]   Wu, J., Wang, D. and Zhang, Y. (2015) Effects of Kinematics on Aerodynamic Periodicity for a Periodically Plunging Airfoil. Theoretical and Computational Fluid Dynamics, 29, 433-454. https://doi.org/10.1007/s00162-015-0366-5