JMP  Vol.8 No.9 , August 2017
Circular Scale of Time and Construction of the Schrödinger Perturbation Series for Energy Made Simple
ABSTRACT
Physically the examined perturbation problem can be regarded as a set of collision events of a time-independent perturbation potential with a quantum system. As an effect of collisions there is an expected definite change of energy of an initially unperturbed state of the system to some stationary perturbed state. The collision process certainly occupies some intervals of time which, however, do not enter the formalism. A striking property is the result of a choice of the sequence of collisions according to the applied circular scale of time: the scale produces almost automatically the energy terms predicted by the Schrödinger perturbation theory which usually is attained in virtue of complicated mathematical transformations. Beyond of the time scale and its rules—strictly connected with the perturbation order N introduced by Schrödinger—a partition process of the number N-1 is applied. This process, combined with contractions of the time points on the scale, provides us precisely with the perturbation terms entering the Schrödinger theory.
Cite this paper
Olszewski, S. (2017) Circular Scale of Time and Construction of the Schrödinger Perturbation Series for Energy Made Simple. Journal of Modern Physics, 8, 1650-1684. doi: 10.4236/jmp.2017.89098.
References
[1]   Berliner, A. and Scheel, K. (Eds.) (1932) Physikalisches Wörterbuch. Springer, Berlin. (In German)

[2]   Schiff, L.I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York.

[3]   Slater, J.C. (1960) Quantum Theory of the Atomic Structure Vol. 1. McGraw-Hill, New York.

[4]   Olszewski, S. (1991) Zeitschrift für Naturforschung, 46A, 313.

[5]   Olszewski, S. and Kwiatkowski, T. (1998) Computers & Chemistry, 22, 445-461.
https://doi.org/10.1016/S0097-8485(98)00023-0

[6]   Olszewski, S. (2003) Trends in Physical Chemistry, 9, 69.

[7]   Olszewski, S. (2013) Quantum Matter, 2, 481-483.
https://doi.org/10.1166/qm.2013.1085

[8]   Olszewski, S. (2014) Journal of Modern Physics, 5, 1502-1523.
https://doi.org/10.4236/jmp.2014.515152

[9]   Olszewski, S. (2014) Journal of Quantum Information Science, 4, 269-283.
https://doi.org/10.4236/jqis.2014.44022

[10]   Schrödinger, E. (1926) Annalen der Physik, 80, 437.

[11]   Schrödinger, E. (1926) Annalen der Physik, 79, 361.

[12]   Schrödinger, E. (1926) Annalen der Physik, 79, 489.

[13]   Schrödinger, E. (1926) Annalen der Physik, 81, 109.

[14]   Mattuck, R.D. (1976) A Guide to Feynman Diagrams in a Many-Body Problem. 2nd Edition, McGraw-Hill, New York.

[15]   Feynman, R.P. (1949) Physical Review, 76, 749.
https://doi.org/10.1103/PhysRev.76.749

[16]   Huby, R. (1961) Proceedings of the Physical Society (London), 78, 529.
https://doi.org/10.1088/0370-1328/78/4/306

[17]   Tong, B.Y. (1962) Proceedings of the Physical Society (London), 80, 1101.
https://doi.org/10.1088/0370-1328/80/5/308

[18]   Davis, P.C.W. (1994) Stirring up Trouble. In: Halliwell, J.J., Perez-Mercader, J. and Zurek, W.H., Eds., Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge, 119-130.

[19]   Olszewski, S. (2015) Journal of Modern Physics, 6, 1277-1288.
https://doi.org/10.4236/jmp.2015.69133

[20]   Olszewski, S. (2016) Reviews in Theoretical Science, 4,336-352.
https://doi.org/10.1166/rits.2016.1066

[21]   Olszewski, S. (2016) Journal of Modern Physics, 7, 162-174.
https://doi.org/10.4236/jmp.2016.71018

[22]   Olszewski, S. (2017) Journal of Modern Physics, 8, 1158-1174.
https://doi.org/10.4236/jmp.2017.88077

[23]   Olszewski, S. (2016) Journal of Modern Physics, 7, 827-851.
https://doi.org/10.4236/jmp.2016.78076

[24]   Olszewski, S. (2016) Journal of Modern Physics, 7, 1004-1020.
https://doi.org/10.4236/jmp.2016.79091

[25]   Olszewski, S. (2016) Journal of Modern Physics, 7, 1440-1448.
https://doi.org/10.4236/jmp.2016.712131

[26]   Condon, E.U. and Shortley, G.H. (1970) The Theory of Atomic Spectra. Cambridge University Press, Cambridge.

[27]   Olszewski, S. (2015) Quantum Matter, 4, 523-532.
https://doi.org/10.1166/qm.2015.1227

 
 
Top