OALibJ  Vol.4 No.1 , January 2017
On the Conformal Unity between Quantum Particles and General Relativity
Author(s) Risto Raitio
02230 Espoo, Finland.
I consider the standard model, together with a preon version of it, to search for unifying principles between quantum particles and general relativity. Argument is given for unified field theory being based on gravitational and electromagnetic interactions alone. Conformal symmetry is introduced in the action of gravity with the Weyl tensor. Electromagnetism is geometrized to conform with gravity. Conformal symmetry is seen to improve quantization in loop quantum gravity. The Einstein-Cartan theory with torsion is analyzed suggesting structure in spacetime below the Cartan scale. A toy model for black hole constituents is proposed. Higgs metastability hints at cyclic conformal cosmology.
Cite this paper
Raitio, R. (2017) On the Conformal Unity between Quantum Particles and General Relativity. Open Access Library Journal, 4, 1-21. doi: 10.4236/oalib.1103342.
[1]   Bars, I., Steinhardt, P. and Turok, N. (2013) Local Conformal Symmetry in Physics and Cosmology. Physical Review D, 89, Article ID: 043515. arXiv:1307.1848. Bars, I., Steinhardt, P. and Turok, N. (2013) Cyclic Cosmology, Conformal Symmetry and the Metastability of the Higgs. Physics Letters B, 726, 50-55. arXiv: 1307.8106.

[2]   https://doi.org/10.1016/j.physletb.2013.08.071 Campiglia, M., Gambini, R. and Pullin, J. (2016) Conformal Loop Quantum Gravity Coupled to the Standard Model. arXiv:1609.04028. Harari, H. (1984) Composite Models for Quarks and Leptons. Physics Reports, 104, 159-179.

[3]   https://doi.org/10.1016/0370-1573(84)90207-2 Raitio, R. (1980) A Model of Lepton and Quark Structure. Physica Scripta, 22, 197-198.

[4]   https://doi.org/10.1088/0031-8949/22/3/002 Raitio, R. (2016) Combinatorial Preon Model for Matter and Unification. Open Access Library Journal, 3, e3032.

[5]   https://doi.org/10.4236/oalib.1103032 Raitio, R. (2016) Standard Model Matter Emerging from Spacetime Preons. Open Access Library Journal, 3, e2788.

[6]   https://doi.org/10.4236/oalib.1102788 Raitio, R. (2016) A Conformal Preon Model. Open Access Library Journal, 3, e3262.

[7]   https://doi.org/10.4236/oalib.1103262 Weyl, H. (1918) Sitzsungber. Preussischen Akademie der Wissenschaften, 465-480. Einstein, A. and Rosen, N. (1935) The Particle Problem in the General Theory of Relativity. Physical Review, 48, 73-77.

[8]   https://doi.org/10.1103/PhysRev.48.73 Cartan, é. (1923) (1924) et (1925) Sur les variétés á connexion affine et la théorie de la relativité généralisée. Annales scientifiques de l’école Normale Supérieure, 42, 17-88. Rovelli, C. (2011) Zakopane Lectures on Loop Gravity. arXiv:1102.3660. Carroll, S. (2004) Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, San Francisco. Mannheim, P. (2007) Solution to the Ghost Problem in Fourth Order Derivative Theories. Foundations of Physics, 37, 532-571. arXiv:hep-th/0608154.

[9]   https://doi.org/10.1007/s10701-007-9119-7 Bender, C. and Mannheim, P. (2008) Giving up the Ghost. Journal of Physics A, 41, Article ID: 304018. arXiv:0807.2607.

[10]   https://doi.org/10.1088/1751-8113/41/30/304018 Mannheim, P. (2012) Making the Case for Conformal Gravity. Foundations of Physics, 42, 388-420. arXiv:1101.2186.

[11]   https://doi.org/10.1007/s10701-011-9608-6 Mannheim, P. (2006) Alternatives to Dark Matter and Dark Energy. Progress in Particle and Nuclear Physics, 56, 340-445. astroph/0505266.

[12]   https://doi.org/10.1016/j.ppnp.2005.08.001 Mannheim, P. (2016) Mass Generation, the Cosmological Constant Problem, Conformal Symmetry, and the Higgs Boson. arXiv:1610.08907. Greenberg, O. (1964) The Color Charge Degree of Freedom in Particle Physics. arXiv:0805.0289. Bekenstein, J. (1972) Non Existence of Baryon Number for Static Black Holes I and II. Physical Review D, 5, 1239-1246.

[13]   https://doi.org/10.1103/PhysRevD.5.1239 Wheeler, J. (1971) Cortona Symposium on Weak Interactions. Accademia Nazionale dei Lincei, Rome. Fabbri, L. (2008) Higher Order Theories of Gravitation, PhD Thesis. arXiv: 0806.2610. Lanczos, C. (1938) A Remarkable Property of the Riemann-Christoffel Tensor in four Dimensions. Annals of Mathematics, 39, 842-850.

[14]   https://doi.org/10.2307/1968467 Maldacena, J. (2011) Einstein Gravity from Conformal Gravity. arXiv:1105.5632. Anastasiou, G. and Olea, R. (2016) From Conformal to Einstein Gravity. Physical Review D, 94, Article ID: 086008. arXiv:1608.07826.

[15]   https://doi.org/10.1103/physrevd.94.086008 Coleman, S. (1988) Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, Cambridge. Ariwahjoedi, S., Astuti, V., Kosasih, J., Rovelli, C. and Zen, F. (2016) Statistical Discrete Geometry. arXiv:1607.08629. Barbero G., J.F. and Perez, A. (2015) Quantum Geometry and Black Holes. arXiv:1501.02963. Mannheim, P. (2014) PT Symmetry, Conformal Symmetry, and the Metrication of Electromagnetism. arXiv:1407.1820. Mannheim, P. (2016) Conformal Invariance and the Metrication of the Fundamental Forces. arXiv:1603.08405. Fabbri, L. (2014) Conformal Standard Model. General Relativity and Gravitation, 44, 3127-3138. arXiv:1107.0466.

[16]   https://doi.org/10.1007/s10714-012-1440-6 Brans, C. and Dicke, R. (1961) Mach’s Principle and a Relativistic Theory of Gravitation. Physical Review, 124, 925-935.

[17]   https://doi.org/10.1103/PhysRev.124.925 Fabbri, L. (2014) Metric-Torsional Conformal Gravity. Physics Letters B, 707, 415-417. arXiv:1101.1761.

[18]   https://doi.org/10.1016/j.physletb.2012.01.008 Fabbri, L. (2013) Conformal Gravity with Dirac Matter. Annales de la Fondation Louis de Broglie, 38, 155-165. arXiv:1101.2334. Shapiro, I (2002) Physical Aspects of the Space-Time Torsion. Physics Reports, 357, 113-213. hep-th/0103093.

[19]   https://doi.org/10.1016/s0370-1573(01)00030-8 Trautman, A. (2006) The Einstein-Cartan Theory. In: Francoise, J.-P., Naber, G.L. and Tsou, S.T., Eds., Encyclopedia of Mathematical Physics, Elsevier, Amsterdam, Vol. 2, 189-195.

[20]   https://doi.org/10.1016/B0-12-512666-2/00014-6 Kibble, T. (1961) Lorentz Invariance and the Gravitational Field. Journal of Mathematical Physics, 2, 212-221.

[21]   https://doi.org/10.1063/1.1703702 Sciama, D. (1962) On the Analogy between Charge and Spin in General Relativity. In: Casciaro, B., Ed., Recent Developments in General Relativity, Pergamon Press, Oxford, 415-439. Sciama, D. (1964) The Physical Structure of General Relativit. Reviews of Modern Physics, 36, 463-469.

[22]   https://doi.org/10.1103/RevModPhys.36.463 Poplawski, N. (2011) Cosmological Constant from Quarks and Torsion. Annalen der Physik, 523, 291-295.

[23]   https://doi.org/10.1002/andp.201000162 Degrassi, G., Di Vita, S., Elias-Miro, J., Espinosa, J., Giudice, G., Isidori, G. and Strumia, A. (2012) Higgs Mass and Vacuum Stability in the Standard Model at NNLO. JHEP, 1208, 098. arXiv:1205.6497. Bars, I., Chen, S.-H., Steinhardt, P. and Turok, N. (2012) Complete Set of Homogeneous Isotropic Analytic Solutions in Scalar-Tensor Cosmology with Radiation and Curvature. Physical Review D, 86, Article ID: 083542. arXiv:1207.1940.

[24]   https://doi.org/10.1103/PhysRevD.86.083542 Klemm, D. (1998) Topological Black Holes in Weyl Conformal Gravity. Classical and Quantum Gravity, 15, 3195-3201. gr-qc/9808051.

[25]   https://doi.org/10.1088/0264-9381/15/10/020 Penrose, R. (2016) Fashion, Faith, and Fantasy in the New Physics of the Universe. Princeton University Press, Princeton.

[26]   https://doi.org/10.1515/9781400880287 Gielen, S. and Turok, N. (2016) Quantum Propagation across Cosmological Singularities. arXiv:1612.02792.