APM  Vol.6 No.5 , April 2016
Global Stability in Dynamical Systems with Multiple Feedback Mechanisms
ABSTRACT
A class of n-dimensional ODEs with up to n feedbacks from the n’th variable is analysed. The feedbacks are represented by non-specific, bounded, non-negative C1 functions. The main result is the formulation and proof of an easily applicable criterion for existence of a globally stable fixed point of the system. The proof relies on the contraction mapping theorem. Applications of this type of systems are numerous in biology, e.g., models of the hypothalamic-pituitary-adrenal axis and testosterone secretion. Some results important for modelling are: 1) Existence of an attractive trapping region. This is a bounded set with non-negative elements where solutions cannot escape. All solutions are shown to converge to a “minimal” trapping region. 2) At least one fixed point exists. 3) Sufficient criteria for a unique fixed point are formulated. One case where this is fulfilled is when the feedbacks are negative.
Cite this paper
Andersen, M. , Vinther, F. and Ottesen, J. (2016) Global Stability in Dynamical Systems with Multiple Feedback Mechanisms. Advances in Pure Mathematics, 6, 393-407. doi: 10.4236/apm.2016.65027.
References
[1]   Savic, D. and Jelic, S. (2005) A Mathematical Model of the Hypothalamo-Pituitary-Adrenocortical System and Its Stability Analysis. Chaos, Solitons & Fractals, 26, 427-436.

[2]   Savic, D., Jelic, S. and Buric, N. (2006) Stability of a General Delay Differential Model of the Hypothalamo-Pituitary-Adrenocortical System. International Journal of Bifurcation and Chaos, 16, 3079-3085.
http://dx.doi.org/10.1142/S0218127406016665

[3]   Vinther, F., Andersen, M. and Ottesen, J.T. (2010) The Minimal Model of the Hypothalamic-Pituitary-Adrenal Axis. Journal of Mathematical Biology, 63, 663-690.
http://dx.doi.org/10.1007/s00285-010-0384-2

[4]   Andersen, M. and Vinther, F. (2010) Mathematical Modeling of the Hypothalamic-Pituitary-Adrenal Axis. IMFUFA tekst 469, Roskilde University, NSM.

[5]   Andersen, M., Vinther, F. and Ottesen, J.T. (2013) Mathematical Modeling of the Hypothalamic-Pituitary-Adrenal gland (Hpa) Axis, Including Hippocampal Mechanisms. Mathematical Biosciences, 246, 122-138.
http://dx.doi.org/10.1016/j.mbs.2013.08.010

[6]   Haddad, W.M., Chellaboina, V. and Hui, Q. (2010) Nonnegative and Compartmental Dynamical Systems. Princeton University Press, Princeton.
http://dx.doi.org/10.1515/9781400832248

[7]   Griffith, J.S. (1968) Mathematics of Cellular Control Processes I. Negative Feedback to One Gene. Journal of Theoretical Biology, 20, 202-208.
http://dx.doi.org/10.1016/0022-5193(68)90189-6

[8]   Tyson, J.J. and Othmer, H.G. (1978) The Dynamics of Feedback Control Circuits in Biochemical Pathways. Progress in Theoretical Biology, 5, 1-62.
http://dx.doi.org/10.1016/B978-0-12-543105-7.50008-7

[9]   Tyson, J.J. (1983) Periodic Enzyme Synthesis and Oscillatory Repression: Why Is the Period of Oscillation Close to the Cell Cycle Time. Journal of Theoretical Biology, 103, 313-328.
http://dx.doi.org/10.1016/0022-5193(83)90031-0

[10]   Bingzhenga, L., Zhenye, Z. and Liansong, C. (1990) A Mathematical Model of the Regulation System of the Secretion of Glucocorticoids. Journal of Biological Physics, 17, 221-233.
http://dx.doi.org/10.1007/BF00386598

[11]   Hosseinichimeh, N., Rahmandad, H. and Wittenborn, A. (2015) Modeling the Hypothalamus-Pituitary-Adrenal Axis: A Review and Extension. Mathematical Biosciences, 268, 52-65.
http://dx.doi.org/10.1016/j.mbs.2015.08.004

[12]   Murray, J. (2002) Mathematical Biology: I. An Introduction. Third Edition, Springer, New York.

[13]   Smith, W.R. (1980) Hypothalamic Regulation of Pituitary Secretion of Luteinizing Hormone II. Feedback Control of Gonadotropin Secretion. Bulletin of Mathematical Biology, 42, 57-78.

[14]   Clarke, I. and Cummings, J. (1984) Direct Pituitary Effects of Estrogen and Progesterone on Gonadotropin Secretion in the Ovariectomized Ewe. Neuroendocrinology, 39, 267-274.
http://dx.doi.org/10.1159/000123990

[15]   Harris-Clark, P., Schlosser, P. and Selgrade, J. (2003) Multiple Stable Solutions in a Model for Hormonal Control of Menstrual Cycle. Bulletin of Mathematical Biology, 65, 157-173.
http://dx.doi.org/10.1006/bulm.2002.0326

[16]   Karsch, F., Dierschke, D., Weick, R., Yamaji, T., Hotchkiss, J. and Knobil, E. (1973) Positive and Negative Feedback Control by Estrogen of Luteinizing Hormone Secretion in the Rhesus Monkey. Endocrinology, 92, 799-804.
http://dx.doi.org/10.1210/endo-92-3-799

[17]   Chitour, Y., Grognard, F. and Bastin, G. (2003) Lecture Notes in Control and Information Sciences: Stability Analysis of a Metabolic Model with Sequential Feedback Inhibition. Springer Berlin/Heidelberg.

[18]   Conrad, M., Hubold, C., Fischer, B. and Peters, A. (2009) Modeling the Hypothalamus-Pituitary-Adrenal System: Homeostasis by Interacting Positive and Negative Feedback. Journal of Biological Physics, 35, 149-162.
http://dx.doi.org/10.1007/s10867-009-9134-3

[19]   Strogatz, S.H. (1994) Nonlinear Dynamics and Chaos. Perseus Books Publishing, LLC, New York.

[20]   Hastings, S., Tyson, J. and Webster, D. (1977) Existence of Periodic Solutions for Negative Feedback Cellular Control Systems. Journal of Differential Equations, 25, 39-64.
http://dx.doi.org/10.1016/0022-0396(77)90179-6

[21]   Fall, C., Marland, E., Wagner, J. and Tyson, J. (2002) Computational Cell Biology. Springer-Verlag, New York.

[22]   Enciso, G.A. (2007) A Dichotomy for a Class of Cyclic Delay Systems. Mathematical Biosciences, 208, 63-75.
http://dx.doi.org/10.1016/j.mbs.2006.09.022

[23]   Sastry, S. (1999) Nonlinear Systems; Analysis, Stability and Control; Interdisciplinary Applied Mathematics. Springer-Verlag, New York.

[24]   Istratescu, V.I. (1981) Fixed Point Theory. Second Edition, D. Reidel Publishing Company, Dordrecht.
http://dx.doi.org/10.1007/978-94-009-8177-5

[25]   Monk, N.A. (2003) Oscillatory Expression of Hes1, p53, and NF-κB Driven by Transcriptional Time Delays. Current Biology, 13, 1409-1413.
http://dx.doi.org/10.1016/S0960-9822(03)00494-9

[26]   Jensen, M.H., Sneppen, K. and Tiana, G. (2003) Correspondence Sustained Oscillations and Time Delays in Gene Expression of Protein Hes1. FEBS Letters, 541, 176-177.
http://dx.doi.org/10.1016/S0014-5793(03)00279-5

[27]   Enciso, G. and Sontag, E.D. (2004) On the Stability of a Model of Testosterone Dynamics. Journal of Mathematical Biology, 49, 627-634.
http://dx.doi.org/10.1007/s00285-004-0291-5

[28]   Momiji, H. and Monk, N.A.M. (2008) Dissecting the Dynamics of the Hes1 Genetic Oscillator. Journal of Theoretical Biology, 254, 784-798.
http://dx.doi.org/10.1016/j.jtbi.2008.07.013

[29]   Lewis, J. (2003) Autoinhibition with Transcriptional Delay. Current Biology, 13, 1398-1408.
http://dx.doi.org/10.1016/S0960-9822(03)00534-7

[30]   Ruan, S. and Wei, J. (2001) On the Zeros of a Third Degree Exponential Polynomial with Applications to a Delayed Model for the Control of Testosterone Secretion. IMA Journal of Mathematics Applied in Medicine and Biology, 18, 41-52.
http://dx.doi.org/10.1093/imammb/18.1.41

[31]   Enciso, G.A. and Sontag, E.D. (2006) Global Attractivity, I/O Monotone Small-Gain Theorems, and Biological Delay Systems. Discrete and Continuous Dynamical Systems, 14, 549-578.

 
 
Top