JHEPGC  Vol.2 No.2 , April 2016
Non-Linear Electrodynamics Gedanken Experiment for Modified Zero Point Energy and Planck’s “Constant”, h Bar, in the Beginning of Cosmological Expansion, So h(Today) = h(Initial). Also How to Link Gravity, Quantum Mechanics, and E and M through Initial Entropy Production in the Early Universe
Author(s) Andrew Beckwith*
ABSTRACT
We initially look at a nonsingular universe representation of entropy, based in part on what is brought up by Muller and Lousto. This is a gateway to bring up information and computational steps (as defined by Seth Lloyd) as to what will be available initially due to a modified Zero Point Energy formalism. The Zero Point Energy formalism is modified as due to Vissers’s setting of an angular plane number in early universe cosmology as k(maximum) ~ 1/(Planck length), with a specific initial density giving rise to initial information content which may permit fixing the initial Planck’s constant, h, which is pivotal to the setting of physical law. This will be in the spirit of Stoica’s removal of initial conditions of non-pathological initial starting points in Cosmology. What we want are necessary and sufficient conditions so h(today) = h(initial). We also in addition make a brief survey into 5th force arguments in gravity which also has a strict entropy interpretation. i.e., how to link gravity, quantum mechanics, and E and M through entropy production.
Cite this paper
Beckwith, A. (2016) Non-Linear Electrodynamics Gedanken Experiment for Modified Zero Point Energy and Planck’s “Constant”, h Bar, in the Beginning of Cosmological Expansion, So h(Today) = h(Initial). Also How to Link Gravity, Quantum Mechanics, and E and M through Initial Entropy Production in the Early Universe. Journal of High Energy Physics, Gravitation and Cosmology, 2, 168-182. doi: 10.4236/jhepgc.2016.22016.
References
[1]   Mueller, R. and Lousto, C.O. (1995) Entanglement Entropy in Curved Space-Time with Event Horizons. Physical Review D, 52, 4512-4517. http://dx.doi.org/10.1103/PhysRevD.52.4512

[2]   Cai, R.-C. (2005) Some Remarks on Constant Curvature Spaces. In: Liu, K. and Yau, S.-T., Eds., Superstring Theory, Higher Education Press, Beijing, 234-250.

[3]   Jack Ng, Y. (2008) Space-Time Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461.

[4]   Camara, C.S., de Garcia Maia, M.R., Carvalho, J.C. and Lima, J.A.S. (2004) Nonsingular FRW Cosmology and Non Linear Dynamics. Arxivastro-ph/0402311 Version 1.

[5]   Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford, 3.

[6]   Schutz, B. (2003) Gravity from the Ground up: An Introductory Guide to Gravity and General Relativity. Cambridge University Press, Cambridge.

[7]   Visser, M. (1996) Lorentzian Wormholes, from Einstein to Hawkings. AIP Press, Springer Verlag, Baltimore, Maryland.

[8]   http://physics.nist.gov/cgi-bin/cuu/Value?plkl

[9]   http://physics.nist.gov/cgi-bin/cuu/Value?plkm

[10]   Walecka, J.D. (2008) Introduction to Modern Physics, Theoretical Foundations. World Press Scientific Co, Pte. Ltd., Singapore, 596224.

[11]   Carmeli, M. and Kuzmenko, T. Value of the Cosmological Constant: Theory versus Experiment. https://cds.cern.ch/record/485959/files/0102033.pdf

[12]   Haranas, I. and Gkigkitzis, I. (2014) The Mass of Graviton and Its Relation to the Number of Information According to the Holographic Principle. International Scholarly Research Notices, 2014, Article ID: 718251. http://www.hindawi.com/journals/isrn/2014/718251/

[13]   Grupen, C. (2005) Astroparticle Physics. Springer-Verlag, Berlin.

[14]   https://cosmology.carnegiescience.edu/timeline/1917

[15]   Dungan, R. and Prosper, H.B. Varying-G Cosmology with Type Ia Supernovae. Submitted to the American Journal of Physics. http://arxiv.org/abs/0909.5416

[16]   Dyson, L., Klebana, M. and Susskind, L. (2002) Disturbing Implications of a Cosmological Constant. Journal of Cosmology and Astroparticle Physics, 2002, 0210:011. http://arxiv.org/pdf/hep-th/0208013v3.pdf

[17]   Peebles, P.J.E. (1993) Principles of Physical Cosmology. Princeton University Press, Princeton.

[18]   Lloyd, S. (2002) Computational Capacity of the Universe. Physical Review Letters, 88, Article ID: 237901. http://arxiv.org/abs/quant-ph/0110141 http://dx.doi.org/10.1103/physrevlett.88.237901

[19]   Taylor, B.N. and Mohr, P.J. (2015) 2014 CODATA Recommended Values. They are generally recognized worldwide for use in all fields of science and technology. The values became available on 25 June 2015 and replaced the 2010 CODATA set. They are based on all of the data available through 31 December 2014. http://physics.nist.gov

[20]   Fishbach, E. and Talmadge, C. (1988) The Fifth Force: An Introduction to Current Research. In: Fackler, O. and Tran Thanh Van, J., Eds., Fifth Force Neutrino Physics, VIII, Moriond Workshop, Editions Frontiers, Gif-sur-Yvette, 369-382.

[21]   Fishbach, E. and Talmadge, C. (1999) The Search for Non Newtonian Gravity. Springer-Verlag, Heidelberg.

[22]   Fishbach, E. (2015) Rencontres De Moriond, 2015, Gravitational Physics Section. http://moriond.in2p3.fr/J15/transparencies/4_wednesday/2_afternoon/5_Fischbach.pdf

[23]   Unnikrishnan, C.S. (2015) Dynamics, Relativity and the Equivalence Principle in the “Once-Given” Universe. http://moriond.in2p3.fr/J15/transparencies/3_tuesday/2_afternoon/7_Unnikrishnan.ppt

[24]   Unnikrishnan, C.S. (2014) True Dynamical Tests of the Weak Equivalence Principle for Matter and Anti-Matter. International Journal of Modern Physics: Conference Series, 30, Article ID: 1460267. http://www.worldscientific.com/doi/pdf/10.1142/S2010194514602671 http://dx.doi.org/10.1142/s2010194514602671

[25]   Goldhaber, A. and Nieto, M. (1974) Mass of the Graviton. Physical Review D, 9, 1119-1121. http://dx.doi.org/10.1103/PhysRevD.9.1119

[26]   Ciufolini, I. and Wheeler, J.A. (1995) Gravitation and Inertia. Princeton Series in Physics, Princeton University Press, Princeton.

[27]   Barret, T.W. (2008) Topological Foundations of Electromagnetism. World Scientific Series in Contemporary Chemical Physics, Vol. 26, World Scientific, Singapore.

[28]   Beckwith, A. (2011) Is There a Generalized Way to Represent Entropy? Prespacetime Journal, 2, 737-742.

[29]   Haggard, H.M. and Rovelli, C. (2015) Black, Hole Fireworks: Quantum Gravity Effects outside the Horizon Spark Black to White Hole Tunneling. Physical Review D, 92, Article ID: 104020. http://arxiv.org/abs/1407.0989 http://dx.doi.org/10.1103/PhysRevD.92.104020

[30]   Corda, C. and Mosquera Cuesta, H.J. (2011) Inflation from R Squared Gravity: A New Approach Using Non Linear Electrodynamics. Astroparticle Physics, 34, 587-590. http://dx.doi.org/10.1016/j.astropartphys.2010.12.002

[31]   De Lorenci, V.A., Klippert, R., Novello, M. and Salim, J.M. (2002) Nonlinear Electrodynamics and FRW Cosmology. Physical Review D, 65, Article ID: 063501. http://dx.doi.org/10.1103/physrevd.65.063501

[32]   Beckwith, A. (2015) Gedankenexperiment for Refining the Unruh Metric Tensor Uncertainty Principle via Schwartz- shield Geometry and Planckian Space-Time with Initial Nonzero Entropy and Applying the Riemannian-Penrose Inequality and Initial Kinetic Energy for a Lower Bound to Graviton Mass (Massive Gravity). Ukrainian Journal of Physics. http://vixra.org/abs/1509.0173

[33]   Galloway, G., Miao, P. and Schoen, R. (2015) Initial Data and the Einstein Constraints. In: Ashtekar, A., Berger, B., Isenberg, J. and MacCallum, M., Eds., General Relativity and Gravitation: A Centennial Perspective, Cambridge University Press, Cambridge, 412-448.

[34]   Haranas, I. and Gkigkitzis, I. (2014) The Mass of Graviton and Its Relation to the Number of Information According to the Holographic Principle. International Scholarly Research Notices, 2014, Article ID: 718251. http://www.hindawi.com/journals/isrn/2014/718251/

[35]   Padmanabhan, T. Accessed 22 November 2015. http://ned.ipac.caltech.edu/level5/Sept02/Padmanabhan/Pad1_2.html

[36]   Wen, H., Li, F.Y., Fang, Z.Y. and Beckwith, A. (2014) Impulsive Cylindrical Gravitational Wave: One Possible Radiative form Emitted from Cosmic Strings and Corresponding Electromagnetic Response. The European Physical Journal C, 74, 2998. http://arxiv.org/abs/1403.7277 http://dx.doi.org/10.1140/epjc/s10052-014-2998-9

[37]   Ali, A.F. and Das, S. (2015) Cosmology from Quantum Potential. Physics Letters B, 741, 276-279. http://dx.doi.org/10.1016/j.physletb.2014.12.057

[38]   Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Scientific, Singapore. http://dx.doi.org/10.1142/6730

[39]   Corda, C. and Cuesta, H. (2010) Removing Black Hole Singularities with Non Linear Electrodynamics. Modern Physics A, 25, 2423-2429.

[40]   Padmanabhan, T. (2010) Gravitation, Foundations and Frontiers. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511807787

[41]   Einstein, A. (1917) Cosmological Considerations in the General Theory of Relativity. Sitzungsber. Preuss. Akad. Wiss, Berlin (Math.Phys.), 1917, 142-152.

[42]   Van Den Broeck, C. (2015) Gravitational Wave Searches with Advanced LIGO and Advanced Virgo. In: Augé, E., Dumarchez, J., Van, J.T.T., Eds., Proceedings of the 50th Rencontres de Moriond, “Gravitation: 100 years after GR”, ARISF, Paris. http://arxiv.org/abs/1505.04621

[43]   Das, S., Mukherjee, S. and Souradeep, T. (2015) Revised Cosmological Parameters after BICEP 2 and BOSS. Journal of Cosmology and Astroparticle Physics, 2015, 016. http://arxiv.org/abs/1406.0857 http://dx.doi.org/10.1088/1475-7516/2015/02/016

[44]   Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. http://arxiv.org/abs/0905.2502 http://dx.doi.org/10.1142/s0218271809015904

[45]   Mosquera Cuesta, H.J. and Salim, J.M. (2004) Nonlinear Electrodynamics and the Gravitational Redshift of Highly Magnetised Neutron Stars. Monthly Notices of the Royal Astronomical Society, 354, L55-L59. http://arxiv.org/abs/astro-ph/0403045 http://dx.doi.org/10.1111/j.1365-2966.2004.08375.x

[46]   Mosquera Cuesta, H.J. and Salim, J.M. (2004) Nonlinear Electrodynamics and the Surface Redshift of Pulsars. The Astrophysical Journal, 608, 925. http://iopscience.iop.org/article/10.1086/378686 http://dx.doi.org/10.1086/378686

 
 
Top