WJCMP  Vol.5 No.4 , November 2015
Coexistence of Spin Density Wave (SDW) and Superconductivity in Ba1-xKxFe2As2
Author(s) Haftu Brhane
With the use of a model Hamiltonian and retarded double time green’s function formalism, we obtain mathematical expressions for spin density wave and superconductivity parameters. The model reveals a distinct possibility of the coexistence of magnetic phase and superconductivity, which are two usually irreconcilable cooperative phenomena. The work is motivated by the recent experimental evidences of coexistence of spin density wave and superconductivity in a number of FeAs-based superconductors. The theoretical results are then applied to show the coexistence of spin density wave and superconductivity in iron pnictide compound Ba1-xKxFe2As2 (0.2 ≤ x < 0.4).

Cite this paper
Brhane, H. (2015) Coexistence of Spin Density Wave (SDW) and Superconductivity in Ba1-xKxFe2As2. World Journal of Condensed Matter Physics, 5, 319-331. doi: 10.4236/wjcmp.2015.54032.
[1]   Watanabe, T., Yanagi, H., Kamiya, T., Kamihara, Y., Hiramatsu, H., Hirano, M. and Hosono, H. (2007) Nickel-Based Oxyphosphide Superconductor with a Layered Crystal Structure, LaNiOP. Inorganic Chemistry, 46, 7719-7721.

[2]   Tegel, M., Bichler, D. and Johrendt, D. (2008) Synthesis, Crystal Structure and Superconductivity of LaNiPO. Solid State Sciences, 10, 193-197.

[3]   Kamihara, Y., Watanabe, T., Hirano, M. and Hosono, H. (2008) Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05 - 0.12) with Tc = 26 K. Journal of the American Chemical Society, 130, 3296-3297.

[4]   Chen, G.F., Li, Z., Wu, D., Li, G., Hu, W.Z., Dong, J., Zheng, P., Luo, J.L. and Wang, N.L. (2008) Superconductivity at 41-K and Its Competition with Spin-Density-Wave Instability in Layered CeO1-xFxFeAs. Physical Review Letters, 100, Article ID: 247002.

[5]   Ren, Z.A., Lu, W., Yang, J., Yi, W., Shen, X.L., Li, Z.C., Che, G.C., Dong, X.L., Sun, L.L., Zhou, F. and Zhao, Z.X. (2008) Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx]FeAs. Chinese Physics Letters, 25, 2215.

[6]   Kenji, I., Yusuke, N. and Hideo H. (2009) To What Extent Iron-Pnictide New Superconductors Have Been Clarified. Journal of the Physical Society of Japan, 78, Article ID: 062001.

[7]   Kordyuk, A.A. (2012) Iron-Based Superconductors: Magnetism, Superconductivity, and Electronic Structure. Low Temperature Physics, 38, 1119-1134.

[8]   Putti, M., et al. (2010) New Fe-Based Superconductors: Properties Relevant for Applications. Superconductor Science and Technology, 23, Article ID: 034003.

[9]   Patel, U., et al. (2009) Growth and Superconductivity of FeSex Crystals. Applied Physics Letters, 94, Article ID: 082508.

[10]   Rotter, M., Tegel, M. and Johrendt, D. (2008) Superconductivity at 38 K in the Iron Arsenide (Ba1-xKx)Fe2As2. arXiv:0805.4630v1 [cond-mat.supr-con]

[11]   Digor, D.F., et al. (2005) Moldavian Journal of the Physical Sciences, 4.

[12]   Rotter, M., Pangerl, M., Tegel, M. and Johrendt, D. (2008) Superconductivity and Crystal Structures of (Ba1-xKx)Fe2As2 (x = 0 - 1). Angewandte Chemie International Edition, 47, 7949-7952.

[13]   Rotter, M., Tegel, M. and Johrendt, D. (2008) Superconductivity at 38 K in the Iron Arsenide (Ba1-xKx)Fe2As2. Physical Review Letters, 101, Article ID: 107006.

[14]   Zubarev, D.N. (1960) Double-Time Green Functions in Statistical Physics. Uspekhi Fizicheskikh Nauk SSSR, 71, 7.

[15]   Hsian, P.C. (2011) Robust Based Band Reed Solomon Detection over Power Line Channel. Journal of Engineering Science and Technology, 6, 69-81.

[16]   Zhou, Y. and Gong, C.D. (2006) Unusual Behavior of Superconductivity Induced by Anisotropic Structure in the Ferromagnetic State. Europhysics Letters, 74, Article ID: 145150.