JMP  Vol.6 No.9 , August 2015
Non-Probabilistic Approach to the Time of Energy Emission in Small Quantum Systems
ABSTRACT
The energy emitted by an electron in course of its transition between two quantum levels can be considered as a dissipated energy. This energy is obtained within a definite interval of time. The problem of the size of the time interval necessary for transitions is examined both on the ground of the quantum approach as well as classical electrodynamics. It is found that in fact the emission time approaches the time interval connected with acceleration of a classical velocity of the electron particle from one of its quantum levels to a neighbouring one.

Cite this paper
Olszewski, S. (2015) Non-Probabilistic Approach to the Time of Energy Emission in Small Quantum Systems. Journal of Modern Physics, 6, 1277-1288. doi: 10.4236/jmp.2015.69133.
References
[1]   Rubinowicz, A. (1968) Quantum Mechanics. Elsevier, Amsterdam.

[2]   Loudon, R. (1991) The Quantum Theory of Light. 2nd Edition, Clarendon Press, Oxford.

[3]   Planck, M. (1910) Acht Vorlesungen ueber Theoretische Physik. S. Hirzel, Leipzig.

[4]   Einstein, A. (1917) Physikalische Zeitschrift, 18, 121.

[5]   Schiff, L.I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York.

[6]   Slater, J.C. (1968) Quantum Theory of the Atomic Structure. McGraw-Hill, New York.

[7]   Weinberg, S. (2013) Lectures on Quantum Mechanics. Cambridge University Press, Cambridge.

[8]   Heisenberg, W. (1927) Zeitschrift für Physik, 43, 172.
http://dx.doi.org/10.1007/BF01397280

[9]   Landau, L. and Peierls, R. (1931) Zeitschrift für Physik, 69, 56.
http://dx.doi.org/10.1007/BF01391513

[10]   Jammer, M. (1974) The Philosophy of Quantum Mechanics. Wiley, New York.

[11]   Schommers, W. (1989) Space-Time and Quantum Phenomena. In: Schommers, W., Ed., Quantum Theory and Pictures of Reality, Springer-Verlag, Berlin, 217-277.
http://dx.doi.org/10.1007/978-3-642-95570-9_5

[12]   Bunge, M. (1970) Canadian Journal of Physics, 48, 1410-1411.
http://dx.doi.org/10.1139/p70-172

[13]   Allcock, G.R. (1959) Annals of Physics, 53, 253-285.
http://dx.doi.org/10.1016/0003-4916(69)90251-6

[14]   Isaacs, A. (1990) Concise Dictionary of Physics. Oxford University Press, Oxford.

[15]   Sommerfeld, A. (1931) Atombau und Spektrallinien: Volume 1. 5th Edition, Vieweg, Braunschweig.

[16]   Eyring, H., Walter, J. and Kimball, G.E. (1957) Quantum Chemistry. Wiley, New York.

[17]   MacDonald, A.H., Ed. (1989) Quantum Hall Effect: A Perspective. Kluwer, Milano.
http://dx.doi.org/10.1007/978-94-010-9709-3

[18]   Olszewski, S. (2013) Quantum Matter, 2, 102-104.
http://dx.doi.org/10.1166/qm.2013.1030

[19]   Olszewski, S. (2013) Journal of Modern Physics, 4, 14-20.
http://dx.doi.org/10.4236/jmp.2013.411A1003

[20]   Olszewski, S. (2014) Quantum Matter, 3, 155-160.
http://dx.doi.org/10.1166/qm.2014.1108

[21]   Lass, H. (1950) Vector and Tensor Analysis. McGraw-Hill, New York.

[22]   Matveev, A.N. (1964) Electrodynamics and the Theory of Relativity. Izd. Wyzszaja Szkola, Moscow. (In Russian)

[23]   Olszewski, S. Quantum Matter, in Press.

[24]   Griffiths, D.J. (1999) Introduction to Electrodynamics. 3rd Edition, Prentice-Hall, Upper Saddle River.

[25]   Slater, J.C. (1967) Quantum Theory of Molecules and Solids. Volume 3, McGraw-Hill, New York.

[26]   Slater, J.C. (1963) and (1965) Quantum Theory of Molecules and Solids. Volume 1 and Volume 2, McGraw-Hill, New York.

[27]   Bloch, F. (1928) Zeitschrift für Physik, 52, 555-600.
http://dx.doi.org/10.1007/BF01339455

[28]   Mott, N.F. and Jones, H. (1958) Theory of the Properties of Metals and Alloys. Oxford University Press, Reprinted by Dover Publications, New York.

 
 
Top