AMPC  Vol.5 No.7 , July 2015
Molecular Structure, Vibrational Assignments and Non-Linear Optical Properties of 4,4’ Dimethylaminocyanobiphenyl (DMACB) by DFT and ab Initio HF Calculations
ABSTRACT
In the present study, structural properties of 4,4’ dimethylaminocyanobiphenyl (DMACB) have been studied extensively by using ab initio Hartree Fock (HF) and density functional theory (DFT) employing B3LYP/B3PW91 exchange correlation levels of theory. The vibrational frequencies of DMACB in the ground state have been calculated by using Hartree Fock level and density functional method (B3LYP/B3PW91) with 6-31G(d, p), basis set. Nonlinear optical (NLO) behavior of the examined molecule is investigated by the determination of the electric dipole moment μ, the polarizability α, and the hyperpolarizability β by using the B3LYP/B3PW91 methods.

Cite this paper
Tabti, C. and Benhalima, N. (2015) Molecular Structure, Vibrational Assignments and Non-Linear Optical Properties of 4,4’ Dimethylaminocyanobiphenyl (DMACB) by DFT and ab Initio HF Calculations. Advances in Materials Physics and Chemistry, 5, 221-228. doi: 10.4236/ampc.2015.57023.
References
[1]   Brédas, J.L. (1994) Molecular Geometry and Nonlinear Optics. Science, 263, 487-488.
http://dx.doi.org/10.1126/science.263.5146.487

[2]   Jensen, L., Sylvester-Hvid, K.O. and Mikkelsen, K.V. (2003) Adipole Interaction Model for the Molecular Second Hyperpolarizability. Journal of Physical Chemistry A, 107, 2270-2276.
http://dx.doi.org/10.1021/jp026208j

[3]   Prasad, P.N. and Williams, D.J. (1991) Introduction to Nonlinear Optical Effects in Molecules and Polymers. Wiley, New York.

[4]   Yanagi, K., Kobayashi, T. and Hashimoto, H. (2003) Origin of Transition Dipole-Moment Polarizability and Hyperpolarizability in Hydrazones. Physical Review B, 67, 115-122.
http://dx.doi.org/10.1103/PhysRevB.67.115122

[5]   Breitung, E.M., Shu, C.F. and McMahon, R.J. (2000) Thiazole and Thiophene Analogues of Donor—Acceptor Stilbenes: Molecular Hyperpolarizabilities and Structure—Property Relationships. Journal of the American Chemical Society, 122, 1154-1160.
http://dx.doi.org/10.1021/ja9930364

[6]   Hua, J.L., Li, J. and Luo, J.D. (2003) Recent Progress of Organic Second-Order Nonlinear Optical. Chinese Journal of Organic Chemistry, 23, 44.

[7]   Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review A, 140, 1133.
http://dx.doi.org/10.1103/PhysRev.140.A1133

[8]   Becke, A.D. (1988) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098.
http://dx.doi.org/10.1103/PhysRevA.38.3098

[9]   Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Physical Review B, 37, 785.
http://dx.doi.org/10.1103/PhysRevB.37.785

[10]   Flurry Jr., R.L. (1968) Molecular Orbital Theories of Bonding in Organic Molecules. Marcel Dekker Inc., New York.

[11]   Perdew, J.P. and Wang, Y. (1992) Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Physical Review B, 45, 13244.
http://dx.doi.org/10.1103/PhysRevB.45.13244

[12]   Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A. (2004) Gaussian 03, Revision C.02 Program. Gaussian Inc., Wallingford.

[13]   Kleinman, D.A. (1962) Nonlinear Dielectric Polarization in Optical Media. Physical Review, 126, 1977-1979.
http://dx.doi.org/10.1103/PhysRev.126.1977

[14]   Pipek, J. and Mezey, P.Z. (1989) A Fast Intrinsic Localization Procedure Applicable for ab Initio and Semiempirical Linear Combination of Atomic Orbital Wave Functions. Journal of Chemical Physics, 90, 4916-4926.
http://dx.doi.org/10.1063/1.456588

[15]   Zyss, J., Ledoux, I., Bertault, M. and E. (1991) Energy Dimethylaminocyanobiphenyl (DMACB): A New Optimized Molecular Crystal for Quadratic Nonlinear Optics in the Visible. Chemical Physics, 150, 125-135.
http://dx.doi.org/10.1016/0301-0104(91)90062-X

[16]   Frisch, A., Nielsen, A.B. and Holder, A.J. (2001) Gauss View Molecular Visualization Program. User Manual, Gaussian Inc., Pittsburg.

[17]   Roeges, N.P.G. (1994) A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures. Wiley, New York.

[18]   Coates, J. (2000) Interpretation of Infrared Spectra, a Pratical Approach. John Wiley and Sons Ltd., Chichester.

[19]   Silverstein, R.M. and Webster, F.X. (2003) Spectrometric Identification of Organic Compounds. 6th Edition, Wiley, New York.

[20]   Colthup, N.B., Daly, L.H. and Wiberly, S.E. (1975) Introduction to Infrared and Raman Spectroscopy. Academic Press, New York.

[21]   Louran, G., Lapkowski, M., Quillard, S., Pron, A., Buisson, J.B. and Lefrant, S. (1996) Vibrational Properties of Polyaniline Isotope Effects. Journal of Physical Chemistry, 100, 6998-7006.
http://dx.doi.org/10.1021/jp953387e

 
 
Top