NS  Vol.3 No.5 , May 2011
Design of supercontinuum generating photonic crystal fiber at 1.06, 1.31 and 1.55 µm wavelengths for medical imaging and optical transmission systems
ABSTRACT
We propose broad supercontinuum spectrum generating highly nonlinear photonic crystal fiber (HN-PCF) which can be used in ultrahigh- resolution optical coherence tomography and optical transmission systems. Using full vector finite difference method, we investigated the different properties of HN-PCF. Broadband su-percontinuum spectrum is numerically calculated by using nonlinear Schr?dinger equation. Investigation showed that it is possible to obtain longitudinal resolution in a biological tissue of 1.3 μm, 1.2 μm and 1.1 μm by using picosecond continuum light at center wavelengths of 1.06 μm, 1.31 μm and 1.55 μm, respectively.

Cite this paper
Begum, F. and Namihira, Y. (2011) Design of supercontinuum generating photonic crystal fiber at 1.06, 1.31 and 1.55 µm wavelengths for medical imaging and optical transmission systems. Natural Science, 3, 401-407. doi: 10.4236/ns.2011.35054.
References
[1]   Russel, P.St.J. (2003) Photonic crystal fibers. Science, 299, 358-362. doi:10.1126/science.1079280

[2]   Champert, P.-A., Couderc, V., Leproux, P., Février, S., Tombelaine, V., Labonté, L., Roy, P., Froehly, C., Nérin, P. (2004) White-light supercontinuum generation in normally dispersive optical fiber using original multi-wave- length pumping system., Optics Express, 12, 4366-4371. doi:10.1364/OPEX.12.004366

[3]   Saitoh, K., Koshiba, M. (2004) Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommuinication window. Optics Express, 12, 2027-2032. doi:10.1364/OPEX.12.002027

[4]   Yamamoto, T., Kubota, H., Kawanishi, S., Tanaka, M., Yamaguchi, S. (2003) Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 11, 1537-1540. doi:10.1364/OE.11.001537

[5]   Hartl, I., Li, X.D., Chudoba, C., Ghanta, R.K., Ko, T.H., Fujimoto, J.G., Ranka, J.K., Windeler, R.S. (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 26, 608-610. doi:10.1364/OL.26.000608

[6]   Sotobayashi, H., Chujo, W., Kitayama, K. (2002) Photonic gateway: multiplexing formate conversions of OCDM-to-WDM and WDM-to-OCDM at 40 Gb/s (4 × 10 Gb/s). Journal of Lightwave Technology, 20, 2022-2028. doi:10.1109/JLT.2002.806769

[7]   He, G.S., Lin, T.C., Prasad, P.N., Kannan, R., Vaia, R.A., Tan, L.-S. (2002) New technic for degenerated two- photon absorption spectral measurements using femtose- cond continuum generation. Optics Express, 10, 566-574.

[8]   Agrawal, G.P. (1995). Nonlinear Fiber Optics. Academic Press, San Diego.

[9]   Youngquist, R.C., Carr, S., Davies, D.E.N. (1987) Optical coherence-domain reflectometry: a new optical evaluation technique. Optics Letters, 12, 158-160. doi:10.1364/OL.12.000158

[10]   Lim, H., Jiang, Y., Wang, Y., Huang, Y.-C., Chen, Z., Wise, F.W. (2005) Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm. Optics Letters, 30, 1171-1173. doi:10.1364/OL.30.001171

[11]   Tse, M.L.V., Horak, P., Poletti, F., Broderick, N.G.R., Price, J.H.V., Hayes, J.R., Richardson, D.J. (2006) Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles. Optics Express, 14, 4445- 4451. doi:10.1364/OE.14.004445

[12]   Kinjo, T., Namihira, Y., Arakaki, K., Koga, T., Kaijage, S.F., Razzak, S.M.A., Begum, F., Nozaki, S., Higa, H. (2010) Design of highly nonlinear dispersion-flattened square photonic crystal fiber for medical applications. Optics Review, 17, 61-65. doi:10.1007/s10043-010-0011-x

[13]   Colston, B.W., Jr., Sathyam, U.S., DaSilva, L.B., Everett, M.J., Stroeve, P., Otis, L.L. (1998) Dental OCT. Optics Express, 3, 230-238. doi:10.1364/OE.3.000230

[14]   Boppart, S.A., Bouma, B.E., Pitris, C., Southern, J.F., Brezinski, M.E., Fujimoto, J.G. (1998) In vivo cellular optical coherence tomography imaging. Nature Medicine, 4, 861-865. doi:10.1038/nm0798-861

[15]   Lee, J.H., Jung, E.J., Kim, C.-S. (2009) Incoherent, CW supercontinuum source based on Erbium fiber ASE for optical coherence tomography imaging. Proceedings of OptoEelectronics and Communication Conference, Hong- kong, 13-17 July 2009, 1-2.

[16]   Begum, F., Namihira, Y., Kinjo, T., Kaijage, S. (2010) Supercontinuum generation in photonic crystal fibers at 1.06, 1.31 and 1.55 μm wavelengths. Electronics Letter, 46, 1518-1520. doi:10.1049/el.2010.2133

[17]   Begum, F., Namihira, Y., Kaijage, S., Razzak, S.M.A., Hai, N.H., Kinjo, T., Miyagi, K., Zou, N. (2009) Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion. Optics communications, 282, 1416-1421. doi:10.1016/j.optcom.2008.12.005

[18]   Shen, L.-P., Huang, W.-P., Jian, S.-S. (2003) Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology, 21, 1644-1651. doi:10.1109/JLT.2003.814397

[19]   Ohmi, M., Ohnishi, Y., Yoden, K., Haruna, M. (2000) In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry. IEEE Transactions on Biomedical Engineering, 47, 1266-1270. doi:10.1109/10.867961

[20]   Reeves, W.H., Knight, J.C., Russell, P.St.J., Roberts, P.J. (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 10, 609-613.

[21]   Poletti, F., Finazzi, V., Monro, T.M., Broderick, N.G.R., Tse, V., Richardson, D.J. (2005) Inverse design and fabrication tolarences of ultra-flattened dispersion holey fibers. Optics Express, 13, 3728-3736. doi:10.1364/OPEX.13.003728

 
 
Top