NS  Vol.6 No.7 , April 2014
Entropy and Entanglement of Moving Two Atoms in a Squeezed Field via Four-Photon Process
ABSTRACT

In this paper, the entanglement between two atoms and squeezed field via four photon process is investigated. The dynamical behavior of the entanglement between two atoms and a squeezed field is analyzed. In particular, the effects of the atomic motion, the initial atomic state and the field squeezing are examined. A high amount of entanglement is generated by increasing the field squeezing. Furthermore, we show that a sudden death and sudden birth emerge when the moving atoms are initially prepared in the excited state.



Cite this paper
Abdel-Khalek, S. and Halawani, S. (2014) Entropy and Entanglement of Moving Two Atoms in a Squeezed Field via Four-Photon Process. Natural Science, 6, 487-494. doi: 10.4236/ns.2014.67047.
References
[1]   Chao, W. and Mao-Fa, F. (2010) The Entanglement of Two Moving Atoms Interacting with a Single-Mode Field via a Three-Photon Process. Chinese Physics B, 19, Article ID: 020309.
http://dx.doi.org/10.1088/1674-1056/19/2/020309

[2]   Bashkirov, E.K., Sochkova, E.Y. and Litvinova, D.V. (2011) The Influence of Dipole-Dipole Interaction on the Sudden Death of Entanglement of Two Atoms with Degenerate Two-Photon Transitions. Pacific Science Review, 13, 255-259.

[3]   Abdel-Khalek, S. and Obada, A.-S.F. (2009) The Atomic Wehrl Entropy of a V-Type Three-Level Atom Interacting with Two-Mode Squeezed Vacuum State. Journal of Russian Laser Research, 30, 146-156.
http://dx.doi.org/10.1007/s10946-009-9066-1

[4]   Abdel-Khalek, S., Abdel-Hameed, H.F. and Abdel-Aty, M. (2011) Atomic Wehrl Entropy of a Single Qubit System. International Journal of Quantum Information, 9, 967-979.
http://dx.doi.org/10.1142/S0219749911007538

[5]   Obada, A.-S.F. and Abdel-Khalek, S. (2004) New Features of the Atomic Wehrl Entropy and Its Density in Multiquanta Two-Level System. Journal of Physics A: Mathematical and General, 37, 6573.
http://dx.doi.org/10.1088/0305-4470/37/25/010

[6]   López, C.E., Romero, G., Lastra, F., Solano, E. and Retamal, J.C. (2008) Sudden Birth versus Sudden Death of Entanglement in Multipartite Systems. Physical Review Letters, 101, Article ID: 080503.
http://dx.doi.org/10.1103/PhysRevLett.101.080503

[7]   Gerry, C. and Knight, P. (2005) Introductory Quantum Optics. University Press, Cambridge.

[8]   Ye, Y.-H., Li, Z.-J. and Zeng, G.-J. (2008) A Measure of Non-Classicality of Even and Odd Coherent States. Chinese Physics Letters, 25, 1175.
http://dx.doi.org/10.1088/0256-307X/25/4/004

[9]   Wu, C. and F, M.-F. (2010) The Entanglement of Two Moving Atoms Interacting with a Single-Mode Field via a Three-Photon Process. Chinese Physics B, 19, Article ID: 020309.
http://dx.doi.org/10.1088/1674-1056/19/2/020309

[10]   Abdel-Khalek, S. (2008) The Effect of Atomic Motion and Two-Quanta JCM on the Information Entropy. Physica A, 387, 779-786.
http://dx.doi.org/10.1016/j.physa.2007.09.034

[11]   Bennett, C.H., Berstein, H.J., Popescu, S. and Schumacher, B. (1996) Concentrating Partial Entanglement by Local Operation. Physical Review A, 53, 2046-2052.
http://dx.doi.org/10.1103/PhysRevA.53.2046

[12]   von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.

[13]   Phoenix, S.J.D. and Knight, P.L. (1988) Fluctuations and Entropy in Models of Quantum Optical Resonance. Annals of Physics (New York), 186 381-407.
http://dx.doi.org/10.1016/0003-4916(88)90006-1

[14]   Braunstein, L. and Caves, C.M. (1988) Information Theoretic Bell Inequalities. Physical Review Letters, 61, 662-665.
http://dx.doi.org/10.1103/PhysRevLett.61.662

[15]   Benenti, G., Casati, G. and Strini, G. (2007) Principles of Quantum Computation and Information, Volume. II: Basic Tools and Special Topics. World Scientific, Singapore City.

[16]   Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and Quantum Information. 10th Anniversary Edition, Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511976667

[17]   Ekert, A. (1991) Quantum Cryptography Based on Bell’s Theorem. Physical Review Letters, 68, 661-663.
http://dx.doi.org/10.1103/PhysRevLett.67.661

[18]   Cirac, J.I. and Gisin, N. (1997) Coherent Eavesdropping Strategies for the Four State Quantum Cryptography Protocol. Physics Letters A, 229, 1-7.
http://dx.doi.org/10.1016/S0375-9601(97)00176-X

[19]   Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.-S. and Peres, A. (1997) Optimal Eavesdropping in Quantum Cryptography. I. Information Bound and Optimal Strategy. Physical Review A, 56, 1163-1172.
http://dx.doi.org/10.1103/PhysRevA.56.1163

[20]   Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A. and Wootters, W.K. (1993) Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 70, 1895-1899.
http://dx.doi.org/10.1103/PhysRevLett.70.1895

[21]   Mozes, S., Oppenheim, J. and Reznik, B. (2005) Deterministic Dense Coding with Partial Entangled State. Physical Review A, 71, Article ID: 012311.
http://dx.doi.org/10.1103/PhysRevA.71.012311

[22]   Ye, L. and Guo, C.C. (2005) Scheme for Implementing Quantum Dense Coding in Cavity QED. Physical Review A, 71, 034304.
http://dx.doi.org/10.1103/PhysRevA.71.034304

[23]   Shannon, C.E. and Weaver, W. (1949) The Mathematical Theory of Cummunications. Urbana University Press, Chicago.

[24]   Abdel-Khalek, S. (2007) Atomic Wehrl Entropy in a Two-Level Atom Interacting with a Cavity Field. Applied Mathematics & Information Sciences, 1, 53-64

[25]   Abdel-Khalek, S., Barzanjeh, S., Eleuch, H. (2011) Entanglement Sudden Death and Sudden Birth in Semiconductor Microcavities. International Journal of Theoretical Physics, 50, 2939-2950.
http://dx.doi.org/10.1007/s10773-011-0794-y

[26]   Berrada, K., Chafik, A., Eleuch, H. and Hassouni, Y. (2010) Concurrence in the Framework of Coherent States. Quantum Information Processing, 9, 13-26.
http://dx.doi.org/10.1007/s11128-009-0124-y

[27]   Berrada, K., Mohammadzade, A., Abdel-Khalek, S., Eleuch, H. and Salimi, S. (2012) Nonlocal Correlations for Manifold Quantum Systems: Entanglement of Two-Spin States. Physica E: Low-dimensional Systems and Nanostructures, 45, 21-27.
http://dx.doi.org/10.1016/j.physe.2012.06.014

[28]   Berrada, K., Eleuch, H. and Hassouni, Y. (2011) Asymtotic Dynamics of Quantum Discord in Open Quantum Systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 44, Article ID: 145503.
http://dx.doi.org/10.1088/0953-4075/44/14/145503

[29]   Obada, A.S.F. and Abdel-Khalek, S. (2010) Entanglement Evaluation with Atomic Fisher information. Physica A: Statistical Mechanics and Its Applications, 389, 891-898.
http://dx.doi.org/10.1016/j.physa.2009.09.015

[30]   Obada, A.S.F., Abdel-Khalek, S. and Plastino, A. (2011) Information Quantifiers’ Description of Weak Field vs. Strong Field Dynamics for a Trapped Ion in a Laser Field. Physica A: Statistical Mechanics and Its Applications, 390, 525-533.
http://dx.doi.org/10.1016/j.physa.2010.09.003

[31]   Abdel-Khalek, S. (2013) Quantum Fisher information for Moving Three-Level Atom. Quantum Information Processing, 12, 3761-3769.
http://dx.doi.org/10.1007/s11128-013-0622-9

[32]   Obada, A.S.F., Abdel-Khalek, S., Berrada, K. and Shaheen, M.E. (2013) Investigations of Information Quantifiers for the Tavis-Cummings Model. Physica A: Statistical Mechanics and Its Applications, 392, 6624-6632.
http://dx.doi.org/10.1016/j.physa.2013.07.051

[33]   Obada, A.S.F., Abdel-Khalek, S. and Abo-Kahla, D.A.M. (2010) New Features of Entanglement and Other Applications of a Two-Qubit System. Optics Communications, 283, 4662-4670.
http://dx.doi.org/10.1016/j.optcom.2010.06.074

[34]   Kowalewska-Kudlaszyk, A., Leonski, W. and Jr, J.P. (2011) Photon-Number Entangled States Generated in Kerr Media with Optical Parametric Pumping. Physical Review A, 83, Article ID: 052326.
http://dx.doi.org/10.1103/PhysRevA.83.052326

 
 
Top