NS  Vol.6 No.6 , April 2014
Generalized Lagrange Structure of Deformed Minkowski Spacetime
ABSTRACT

We discuss the generalized Lagrange structure of a deformed Minkowski space (DMS), , namely a (four-dimensional) generalization of the (local) space-time based on an energy-dependent “deformation” of the usual Minkowski geometry. In , local Lorentz invariance is naturally violated, due to the energy dependence of the deformed metric. Moreover, the generalized Lagrange structure of allows one to endow the deformed space-time with both curvature and torsion.


Cite this paper
Mignani, R. , Cardone, F. and Petrucci, A. (2014) Generalized Lagrange Structure of Deformed Minkowski Spacetime. Natural Science, 6, 399-410. doi: 10.4236/ns.2014.66040.
References
[1]   Mattingly, D. (2005) Modern Tests of Lorentz Invariance. Living Reviews in Relativity, 8, 5.
http://www.livingreviews.org/lrr-2005-5

[2]   Kostelecky, V.A. (1999, 2002, 2004) CPT and Lorentz Symmetry I, II, III. World Scientific, Singapore.

[3]   Cardone, F. and Mignani, R. (2004) Energy and Geometry—An Introduction to Deformed Special Relativity. World Scientific, Singapore.

[4]   Cardone, F. and Mignani, R. (2007) Deformed Spacetime—Geometrizing Interactions in Four and Five Dimensions. Springer, Heidelberg, Dordrecht.
http://dx.doi.org/10.1007/978-1-4020-6283-4

[5]   Cardone, F., Mignani, R. and Petrucci, A. (2011) The Principle of Solidarity: Geometrizing Interactions. In: Dvoeglazov, V.V., Ed., Einstein and Hilbert: Dark Matter, Nova Science, Commack, 19.

[6]   Mignani, R., Cardone, F. and Petrucci, A. (2013) El. J. Theor. Phys., 29, 1.

[7]   Miron, R., Jannussis, A. and Zet, G. (2004) In Tsagas, Gr., Ed., Proc. Conf. Applied Differential Geometry—Gen. Rel. and the Workshop on Global Analysis, Differential Geometry and Lie Algebra, 2001, Geometry Balkan Press, 101.

[8]   Miron, R. and Anastasiei, M. (1994) The Geometry of Lagrange Spaces: Theory and Applications. Kluwer, Alphen aan den Rijn.

[9]   Miron, R., Hrimiuc, D., Shimada, H. and Sabau, S.V. (2002) The Geometry of Hamilton and Lagrange Spaces. Kluwer, Alphen aan den Rijn.

[10]   Steenrod, N. (1951) The Topology of Fibre Bundles. Princeton University Press, Princeton.

[11]   Cardone, F., Mignani, R. and Petrucci, A. (2012) Piezonuclear Reactions. Journal of Advanced Physics, 1, 3-36.
http://dx.doi.org/10.1166/jap.2012.1015

 
 
Top