JAMP  Vol.1 No.4 , October 2013
Spectrum of Signals on the Quaternion Fourier Transform Domain
ABSTRACT

The quaternion Fourier transform plays a vital role in the representation of two-dimensional signals. This paper characterizes spectrum of quaternion-valued signals on the quaternion Fourier transform domain by the partial derivative.


Cite this paper
Yang, G. and Fu, Y. (2013) Spectrum of Signals on the Quaternion Fourier Transform Domain. Journal of Applied Mathematics and Physics, 1, 36-38. doi: 10.4236/jamp.2013.14007.
References
[1]   S. C. Pei, J. J. Ding and J. H. Chang, “Efficient Implementation of Quaternion Fourier Transform, Convolution, and Correlation by 2-D Complex FFT,” IEEE Transactions on Signal Processing, Vol. 49, No. 11, 2001, pp. 2783-2797. http://dx.doi.org/10.1109/78.960426

[2]   T. Bülow, M. Felsberg and G. Sommer, “Non-Commutative Hypercomplex Fourier Transforms of Multidimensional Signals,” In: G. Sommer, Ed., Geometric Computing with Clifford Algebras, Springer, Heidelberg, 2001, pp. 187-207.

[3]   E. Hitzer, “Quaternion Fourier Transform on Quaternion Fields and Generalizations,” Advances in Applied Clifford Algebras, Vol. 17, No. 3, 2007, pp. 497-517. http://dx.doi.org/10.1007/s00006-007-0037-8

[4]   E. Hitzer, “Directional Uncertainty Principle for Quaternion Fourier Transform,” Advances in Applied Clifford Algebras, Vol. 20, No. 2, 2010, pp. 271-284. http://dx.doi.org/10.1007/s00006-009-0175-2

[5]   S. J. Sangwine and T. A. Ell, “Hypercomplex Fourier Transforms of Color Images,” IEEE Transactions on Image Processing, Vol. 16, No. 1, 2007, pp. 22-35. http://dx.doi.org/10.1109/TIP.2006.884955

[6]   E. Bayro-Corrochano, N. Trujillo and M. Naranjo, “Quaternion Fourier Descriptors for Preprocessing and Recognition of Spoken Words Using Images of Spatiotemporal Representations,” Journal of Mathematical Imaging and Vision, Vol. 28, No. 2, 2007, pp. 179-190. http://dx.doi.org/10.1007/s10851-007-0004-y

[7]   M. Bahri, E. Hitzer, A. Hayashi and R. Ashino, “An Uncertainty Principle for Quaternion Fourier Transform,” Computers & Mathematics with Applications, Vol. 56, No. 9, 2008, pp. 2398-2410. http://dx.doi.org/10.1016/j.camwa.2008.05.032

[8]   V. K. Tuan, “Spectrum of Signals,” Journal of Fourier Analysis and Applications, Vol. 7, No. 3, 2001, pp. 319- 323. http://dx.doi.org/10.1007/BF02511817

[9]   V. K. Tuan, “Paley-Wiener-Type theorems,” Fractional Calculus and Applied Analysis, Vol. 2, 1999, pp. 135- 143.

[10]   V. K. Tuan and A. I. Zayed, “Paley-Wiener-Type Theorems for a Class of Integral Transforms,” Journal of Fourier Analysis and Applications, Vol. 266, 2002, pp. 200-226. http://dx.doi.org/10.1006/jmaa.2001.7740

[11]   N. B. Andersen and M. De Jeu, “Real Paley-Wiener Theorems and Local Spectral Radius Formulas,” Transactions of the American Mathematical Society, Vol. 362, 2010, pp. 3613-3640. http://dx.doi.org/10.1090/S0002-9947-10-05044-0

[12]   N. B. Andersen, “Real Paley-Wiener Theorems for the Hankel Transform,” Journal of Fourier Analysis and Applications, Vol. 12, No. 1, 2006, pp. 17-25. http://dx.doi.org/10.1007/s00041-005-4056-3

[13]   Q. H. Chen, L. Q. Li and G. B. Ren, “Generalized Paley-Wiener Theorems,” International Journal of Wavelets, Multiresolution and Information, Vol. 10, No. 2, 2012, 1250020 (7 pages).

[14]   C. Chettaoui, Y. Othmani and K. Trimèche, “On the Range of the Dunkl Transform on ,” Analysis and Applications, Vol. 2, No. 3, 2004, pp. 177-192. http://dx.doi.org/10.1142/S0219530504000370

[15]   H. Mejjaoli and K. Trimèche, “Spectrum of functions for the Dunkl transform on ,” Fractional Calculus and Applied Analysis, Vol. 10, No. 1, 2007, pp. 19-38.

 
 
Top