JMP  Vol.4 No.8 A , August 2013
Macroscopic Effect of Quantum Gravity: Graviton, Ghost and Instanton Condensation on Horizon Scale of Universe
ABSTRACT

We discuss a special class of quantum gravity phenomena that occur on the scale of the Universe as a whole at any stage of its evolution, including the contemporary Universe. These phenomena are a direct consequence of the zero rest mass of gravitons, conformal non-invariance of the graviton field, and one-loop finiteness of quantum gravity, i.e. it is a direct consequence of first principles only. The effects are due to graviton-ghost condensates arising from the interfereence of quantum coherent states. Each of coherent states is a state of gravitons and ghosts of a wavelength of the order of the horizon scale and of different occupation numbers. The state vector of the Universe is a coherent superposition of vectors of different occupation numbers. One-loop approximation of quantum gravity is believed to be applicable to the contemporary Universe because of its remoteness from the Planck epoch. To substantiate the reliability of macroscopic quantum effects, the formalism of one-loop quantum gravity is discussed in detail. The theory is constructed as follows: Faddeev-Popov path integral in Hamilton gauge → factorization of classical and quantum variables, allowing the existence of a self-consistent system of equations for gravitons, ghosts and macroscopic geometry → transition to the one-loop approximation, taking into account that contributions of ghost fields to observables cannot be eliminated in any way. The ghost sector corresponding to the Hamilton gauge automatically ensures of one-loop finiteness of the theory off the mass shell. The Bogolyubov-Born-Green-Kirckwood-Yvon (BBGKY) chain for the spectral function of gravitons renormalized by ghosts is used to build a self-consistent theory of gravitons in the isotropic Universe. It is the first use of this technique in quantum gravity calculations. We found three exact solutions of the equations, consisting of BBGKY chain and macroscopic Einsteins equations. It was found that these solutions describe virtual graviton and ghost condensates as well as condensates of instanton fluctuations. All exact solutions, originally found by the BBGKY formalism, are reproduced at the level of exact solutions for field operators and state vectors. It was found that exact solutions correspond to various condensates with different graviton-ghost compositions. Each exact solution corresponds to a certain phase state of graviton-ghost substratum. We establish conditions under which a continuous quantum-gravity phase transitions occur between different phases of the graviton-ghost condensate.

KEYWORDS
Quantum Gravity

Cite this paper
L. Marochnik, D. Usikov and G. Vereshkov, "Macroscopic Effect of Quantum Gravity: Graviton, Ghost and Instanton Condensation on Horizon Scale of Universe," Journal of Modern Physics, Vol. 4 No. 8, 2013, pp. 48-101. doi: 10.4236/jmp.2013.48A007.
References
[1]   L. Marochnik, D. Usikov and G. Vereshkov, Foundation of Physics, Vol. 38, 2008, pp. 546-555. doi:10.1007/s10701-008-9220-6

[2]   M. H. Goroff and A. Sagnotti, Physics Letters B, Vol. 160, 1985, pp. 81-85.

[3]   G. ’t Hooft and M. Veltman, Annals of Institute Henri Poincare, Vol. 20, 1974, pp. 69-94.

[4]   N. D. Birrell and P. C. W. Davies. “Quantum Fields in Curved Space,” Cambridge University Press, Cambridge, 1982. doi:10.1017/CBO9780511622632

[5]   E. M. Lifshitz, Journal of Experimental and Theoretical Physics, Vol. 16, 1946, p. 587.

[6]   L. P. Grishchuk, Soviet Physics-JETP, Vol. 40, 1975, pp. 409-415.

[7]   R. A. Isaakson, Physical Review, Vol. 166, 1968, pp. 1263-1271. doi:10.1103/PhysRev.166.1263

[8]   R. A. Isaakson, Physical Review, Vol. 166, 1968, pp. 1272-1280. doi:10.1103/PhysRev.166.1272

[9]   L. S. Marochnik, N. V. Pelikhov and G. M. Vereshkov, Astrophysics and Space Science, Vol. 34, 1975, pp. 249-263. doi:10.1007/BF00644797

[10]   L. S. Marochnik, N. V. Pelikhov and G. M. Vereshkov, Astrophysics and Space Science, Vol. 34, 1975, pp. 281-294. doi:10.1007/BF00644799

[11]   L. R. W. Abramo, R. H. Brandenberger and V. F. Mukhanov, Physical Review D, Vol. 56, 1997, pp. 3248-3257. doi:10.1103/PhysRevD.56.3248

[12]   L. R. W. Abramo, Physical Review D, Vol. 60, 1999, Article ID: 064004. doi:10.1103/PhysRevD.60.064004

[13]   V. Moncrief, Physical Review D, Vol. 18, 1978, pp. 983-989. doi:10.1103/PhysRevD.18.983

[14]   L. H. Ford and L. Parker, Physical Review D, Vol. 16, No. 6, 1977, pp. 1601-1608. doi:10.1103/PhysRevD.16.1601

[15]   B. L. Hu and L. Parker, Physics Letters A, Vol. 63, 1977, pp. 217-220. doi:10.1016/0375-9601(77)90880-5

[16]   Y. B. Zeldovich and A. Starobinsky, Letters to Journal of Experimental and Theoretical Physics, Vol. 26, 1977, pp. 252-255.

[17]   B. S. DeWitt, “Quantum Gravity: A New Synthesis,” In: S. W. Hawking and W. Israel, Eds., General Relativity, Cambridge University Press, Cambridge, 1979, pp. 680-743.

[18]   S. W. Hawking, “The Path-Integral Approach to Quantum Gravity,” In S. W. Hawking and W. Israel, Eds., General Relativity, Cambridge University Press, Cambridge, 1979, pp. 746-785.

[19]   G. Vereshkov and L. Marochnik, Journal of Modern Physics, Vol. 4, 2013, pp. 285-297. doi:10.4236/jmp.2013.42039

[20]   L. D. Faddeev and A. A. Slavnov, “Gauge Fields. Introduction to Quantum Theory,” 2nd Edition, Addison-Wesley Publishing Company, Boston, 1991.

[21]   L. D. Faddeev and V. N. Popov, Physics Letters B, Vol. 25, 1967, pp. 29-30. doi:10.1016/0370-2693(67)90067-6

[22]   B. S. DeWitt, Physical Review, Vol. 160, 1967, pp. 1113-1148. doi:10.1103/PhysRev.160.1113

[23]   B. S. DeWitt, Physical Review, Vol. 162, 1967, pp. 1195-1239. doi:10.1103/PhysRev.162.1195

[24]   L. Marochnik, D. Usikov and G. Vereshkov, “Graviton, Ghost and Instanton Condensation on Horizon Scale of the Universe. Dark Energy as Macroscopic Effect of Quantum Gravity,” 2008, pp. 1-93. ArXiv:0811.4484v2 [gr-qc]

[25]   N. N. Bogolyubov, A. A. Logunov, A. I. Oksak and I. T. Todorov, “General Principles of Quantum Field Theory,” Kluwer, Springer, 1990. doi:10.1007/978-94-009-0491-0

[26]   L. D. Faddeev, “Hamilton Form of the Theory of Gravity,” Proceedings of the V International Conference on Gravitation and Relativity, Tbilisi, 9-16 September 1968, pp. 54-56.

[27]   L. D. Faddeev, Theoretical and Mathematical Physics, Vol. 1, 1969, pp. 1-13. doi:10.1007/BF01028566

[28]   E. S. Fradkin and G. A. Vilkovisky, Physical Review D, Vol. 8, 1974, pp. 4241-4285.

[29]   N. P. Konopleva, V. N. Popov and N. M. Queen, “Gauge Fields,” Harwood Academic Publishers, Amsterdam, 1981.

[30]   A. B. Borisov and V. I. Ogievetsky, Theoretical and Mathematical Physics, Vol. 21, 1975, pp. 1179-1188. doi:10.1007/BF01038096

[31]   N. N. Bogolyubov and D. V. Shirkov, “The Theory of Quantum Fields,” Interscience, New York, 1959.

[32]   P. J. Steinhardt and N. Turok, Physical Review D, Vol. 65, 2002, Article ID: 126003. doi:10.1103/PhysRevD.65.126003

[33]   Y. B. Zeldovich, Letters to Journal of Experimental and Theoretical Physics, Vol. 6, 1967, pp. 316-317.

[34]   S. Weinberg, Review of Modern Physics, Vol. 61, 1989, pp. 1-23. doi:10.1103/RevModPhys.61.1

[35]   N. S. Kardashev, Astronomicheskii Zhurnal, Vol. 74, 1997, p. 803.

[36]   R. Pasechnik, V. Beylin and G. Vereshkov, Journal of Cosmology and Astroparticle Physics, Vol. 1306, 2013, p. 11.

[37]   R. Pasechnik, V. Beylin and G. Vereshkov, Physical Review D, Vol. 88, 2013, pp. 02359-023514.

[38]   S. Nobbenhuis, “The Cosmological Constant Problem, an Inspiration for New Physics,” Ph.D. Thesis, Institute for Theoretical Physics Utrecht University, Leuvenlaan and Spinoza Institute, Utrecht, 2006.

[39]   A. D. Dolgov, “The Very Early Universe,” In: G. W. Gibbons, S. W. Hawking and S. T. C. Siklos, Eds., Proceedings of the Nuffield Workshop, Cambridge University Press, Cambridge, 1983, p. 449.

[40]   L. H. Ford, Physical Review D, Vol. 35, 1987, pp. 2339-2344. doi:10.1103/PhysRevD.35.2339

[41]   V. A. Rubakov, Physical Review D, Vol. 61, 2000, Article ID: 061501. doi:10.1103/PhysRevD.61.061501

[42]   P. J. Steinhardt, N. Turok, Science, Vol. 312, 2006, pp. 1180-1183. doi:10.1126/science.1126231

[43]   R. Rajaraman, “Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory,” North-Holland Publishing Company, Amsterdam, 1982.

[44]   A. Belavin and A. M. Polyakov, Letters to Jounal of Experimental and Theoretical Physics, Vol. 22, 1975, pp. 245-246.

[45]   G. ‘t Hooft, Physical Review Letters, Vol. 37, 1976, pp. 8-11. doi:10.1103/PhysRevLett.37.8

[46]   C. G. Callan Jr., R. F. Dashen and D. J. Gross, Physics Letters B, Vol. 63, 1976, pp. 334-340. doi:10.1016/0370-2693(76)90277-X

[47]   R. Jackiw and C. Rebbi, Physical Review Letters, Vol. 36, 1976, pp. 1116-1119. doi:10.1103/PhysRevLett.36.1116

[48]   R. Jackiw and C. Rebbi, Physical Review Letters, Vol. 37, 1976, pp. 1172-1175. doi:10.1103/PhysRevLett.37.172

[49]   M. A. Shifman, “Instantons in Gauge Theories,” World Scientific, Singapore, 1994.

[50]   L. Marochnik, Gravitation and Cosmology, Vol. 19, 2013, pp. 178-187; arXiv:1204.4744 [gr-qc], 2012.

[51]   V. A. Rubakov and P. G. Tinyakov, Physics Letters B, Vol. 214, 1988, pp. 334-338.

[52]   V. A. Rubakov and P. G. Tinyakov, Letters to Journal of Experimental and Theoretical Physics, Vol. 48, 1988, pp. 327-330.

[53]   V. A. Rubakov, Letters to Journal of Experimental and Theoretical Physics, Vol. 39, 1984, pp. 107-110.

 
 
Top