NS  Vol.2 No.12 , December 2010
Assessment of a short phylogenetic marker based on comparisons of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences on the genus Xanthomonas
ABSTRACT
A short phylogenetic marker previously used in the reconstruction of the Class γ-proteobacteria was assessed here at a lower taxa level, species in the genus Xanthomonas. This maker is 224 nucleotides in length. It is a combination of a 157 nucleotide sequence at the 3' end of the 16S rRNA gene and a 67 nucleotide sequence at the 5' end of the 16S-23S ITS sequence. A total of 23 Xanthomonas species were analyzed. Species from the phylogenetically related genera Xylella and Stenotrophomonas were included for com- parison purposes. A bootstrapped neighbor- joining phylogenetic tree was inferred from comparative analyses of the 224 bp nucleotide sequence of all 30 bacterial strains under study. Four major Groups were revealed based on the topology of the neighbor-joining tree, Group I to IV. Group I and II contained the genera Steno-trophomonas and Xylella, respectively. Group III included five Xanthomonas species: X. theicola, X. sacchari, X. albineans, X. transluscens and X. hyacinthi. This group of Xanthomonas species is often referred to as the hyacinthi group. Group IV contained the other 18 Xanthomonas species. The overall topology of the neighbor-joining tree was in agreement with currently accepted phylogenetic. The short phylogenetic marker used here could resolve species from three dif-ferent Xanthomonadacea genera: Stenotro-phomonas, Xylella and Xanthomonas. At the level of the Xanthomonas genus, distant spe-cies could be distinguished, and whereas some closely-related species could be distinguished, others were undistinguishable. Pathovars could not be distinguished. We have met the resolving limit of this marker: pathovars and very closely related species from same genus.

Cite this paper
nullYakoubou, S. and Côté, J. (2010) Assessment of a short phylogenetic marker based on comparisons of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences on the genus Xanthomonas. Natural Science, 2, 1369-1374. doi: 10.4236/ns.2010.212167.
References
[1]   McNeely, W.H. and Kang, K.S. (1973) Xanthan and some other biosynthetic gums. In: Whistler, R.L. and BeMiller, J.N. Eds., 2nd Edition, Industrial Gums, Aca-demic Press, New York, 473-497.

[2]   Kennedy J.F. and Bradshaw, I.J. (1984) Production, Properties, and Applications of Xanthan. In: Bushell M. E., Ed., Progress in Industrial Microbiology, Elsevier, Amsterdam, 319-371.

[3]   Vauterin, L., Swings, J., Kersters, K., Gillis, M., Mew, T. W., Schroth, M.N., Palleroni, N.J., Hildebrand, D.C., Stead, D.E. and other authors (1990) Towards an im-proved taxonomy of Xanthomonas. International Journal of Systematic Bacteriology, 40, 312-316.

[4]   Hayward, A.C. (1993) The host of Xanthomonas. In Swings J.G. and Civerolo E.L., Eds., Xanthomonas, Chapman & Hall, London, 51-54.

[5]   Leyns, F., De Cleene, M., Swing, J. and De Ley, J. (1984) The host range of the genus Xanthomonas. Botanical re-view, 50, 308-356.

[6]   Vauterin, L., Hoste, B., Kersters, K. and Swings, J. (1995) Reclassification of Xanthomonas. International Journal of Systematic Bacteriology, 45, 472-489.

[7]   Lazo, G.R., Roffey, R. and Gabriel, D.W. (1987) Pathovars of Xanthomonas campestris are distinguishable by restriction fragment-length polymorphism. Interna-tional Journal of Systematic Bacteriology, 37, 144-221.

[8]   Lazo, G.R., and Gabriel, D.W. (1987) Conservation of plasmid DNA sequences and pathovar identification of strains of Xanthomonas campestris. Phytopathology, 77, 448-453.

[9]   Vauterin, L. Yang, P., Hoste, B., Vancanneyt, M., Civerolo, E.L., Swings, J. and Kersters, K.(1991) Dif-ferentiation of Xanthomonas campestris pv. Citri strains by sodium dodecyl; sulphate-polyacrylamide gel elec-trophoresis of proteins, fatty acid analysis, and DNA-DNA hybridization. International Journal of Sys-tematic Bacteriology, 41, 535-542.

[10]   Chase, A.R., Stall, R.E., Hodge, N.C. and Jones, J.B. (1992) Characterization of Xanthomonas campestris strains from aroids using physiological, pathological, and fatty acid analyses. Phytopathology, 82, 754-759.

[11]   Yang, P., Vauterin, L., Vancanneyt, M., Swings, J. and Kersters, K. (1993) Application of fatty acid methyl es-ters for the taxonomic analysis of the genus Xanthomo-nas. Systematic and Applied Microbiology, 16, 47-71.

[12]   Vauterin, L., Hoste, B., Kersters, K. and Swings, J. (1995) Reclassification of Xanthomonas. International Journal of Systematic Bacteriology, 45, 472-489.

[13]   Hauben, L., Vauterin, L., Swings, J. and Moore, E. (1997) Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. International Journal of System-atic Bacteriology, 47, 328-335.

[14]   Maiden, M.C.J., Bygraves, J.A., Feil, E.J., Morelli, G., Russell, J.E., Urwin, R., Zhang, Q., Zurth, K., Caugant, D., Feavers, I.M., Achtman, M., and Spratt, B.G. (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences, USA, 1998, 95, 3140-3145.

[15]   Gon?alves, E.R. and Rosato, Y.B. (2002) Phylogenetic analysis of Xanthomonas species based upon 16S–23S rDNA intergenic spacer sequences. International Journal of Systematic and Evolutionary Microbiology, 52, 355- 361.

[16]   Rademaker, J.L.W., Louws, F.J., Schultz, M.H., Ross-bach, U., Vauterin, L., Swings, J. and de Bruijn, F.J. (2005) A comprehensive species to strain taxonomic framework for Xanthomonas. Phytopathology, 95, 1098- 1111.

[17]   Parkinson, N., Aritua, V., Heeney, J., Cowie, C., Bew, J. and Stead, D. (2007) Phylogenetic analysis of Xantho-monas species by comparison of partial gyrase B gene sequences. International Journal of Systematic and Evo-lutionary Microbiology, 57, 2881-2887.

[18]   Young, J.M., Park, D.-C., Shearman, H.M. and Fargier, E. (2008) A multilocus sequence analysis of the genus Xan-thomonas. Systematic and Applied Microbiology, 31, 366-377.

[19]   Trébaol, G., Gardan, C., Manceau, J., Tanguy, Y., Trilly, Y. and Boury, S. (2000) Genomic and phenotypic charac-terisation of Xanthomonas cynarae; a new species caus-ing bacterial bract spot of artichoke (Cynara scolymus L.). International Journal of Systematic and Evolution-ary Microbiology, 50, 1471-1478.

[20]   Jones, J.B., Lacy, G.H., Bouzar, H., Stall, R.E. and Schaad, N.W. (2004) Reclassification of the xanthomo-nads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology, 27, 755-762.

[21]   Euzéby, J. (2006) Validation of the publication of new names and new combinations previously effectively, but not validly published. Validation List no. 109. Interna-tional Journal of Systematic and Evolutionary Microbi-ology, 56, 925-927.

[22]   Euzéby, J. (2007) List of New names and new combina-tions previously effectively, but not validly, published. Validation List no. 115. International Journal of System-atic and Evolutionary Microbiology, 57, 893-897.

[23]   Schaad, N.W., Postnikova, E., Lacy, G.H., Sechler, A., Agarkova, I., Stromberg, P.E., Stromberg, V.K. and Vi-daver, A.K. (2005) Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. al-falfae subsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv. malvacea

[24]   Schaad, N.W., Postnikova, E., Lacy, G., Sechler, A., Agarkova, I., Stromberg, P.E., Stromberg, V.K. and Vi-daver, A.K. (2006) (Erratum) Emended classification of Xanthomonad pathogens on citrus. Systematic and Ap-plied Microbiology, 29, 690-695.

[25]   Schaad, N.W., Postnikova, E., Lacy, G., Sechler, A., Agarkova, I., Stromberg, P. E., Stromberg, V.K. and Vi-daver, A.K. (2007) Xanthomonas alfalfae sp. nov., Xan-thomonas citri sp. nov. and Xanthomonas fuscans sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List no. 115. International Journal of Systematic and Evolution-ary Microbiology, 57, 893-897.

[26]   Yakoubou, S. and C?té, J.-C., (2010) Phylogeny of γ-proteobacteria inferred from comparisons of 3' end 16S rRNA gene and 5’ end 16S-23S ITS nucleotide sequences. Natural Science, 2(6), 535-543.

[27]   Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) Clustal W: improving the sensitivity of progressive mul-tiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680.

[28]   Saitou, N. and Nei, M. (1987) The neighbour-joining method: a new method of constructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.

[29]   Kimura, M. (1983) The neutral theory of molecular evo-lution. Cambridge University Press, UK.

[30]   Page, R.D.M. (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Com-puter Application in the Biosciences, 12, 357-358.

[31]   Page, R.D.M. (2000) TreeView—tree drawing software for Apple Macintosh and Windows. http://taxonomy.zoo- logy.gla.ac.uk/rod/treeview.html.

[32]   Xu, D. and C?té, J.-C. (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3’ end 16S rDNA and 5’ end 16S-23S ITS nucleotide sequences. International Journal of Systematic and Evolutionary Microbiology, 53, 695- 704.

[33]   Yakoubou, S., Xu, D. and C?té, J.-C. (2010) Phylogeny of the Order Bacillales inferred from 3’ 16S rDNA and 5’ 16S-23S ITS nucleotide sequences. Natural Science, 2 990-997.

 
 
Top