JMP  Vol.4 No.7 A , July 2013
Cosmic Illusions
Author(s) Bernard H. Lavenda*

A critique of black-hole-black-body radiation, black-hole thermodynamics, entropy bounds, inflation cosmology, and the lack of gravitational aberration is presented. With the exception of the last topic, the common thread is the misuse of entropy and, consequently, the second law. Hawking’s derivation of the entropy loss due to black hole emission rests on Kirchhoff’s radiation law which equates the rates of absorption and emission of energy in any given frequency interval. Black-body radiation cannot, therefore, be used as a mechanism for black-hole evaporation. A derivation of the Planck factor from an exponential Doppler shift shows why the temperature cannot be proportional to the acceleration; accelerations do not cause Doppler shifts. Inflationary cosmology is based on a misconception that the adiabatic condition of Einstein’s equations hold, and, yet, there can be an enormous increase in the entropy. The cause for the increase is a negative pressure which contradicts the thermodynamic definition of positive pressure as the derivative of the entropy with respect to the volume times the temperature: Increases in volume cause corresponding increases in the entropy. A first-order phase transition cannot occur under adiabatic conditions, cannot generate entropy, and the latent heat cannot be used to reheat the universe. Finally, a negative pressure is invoked to explain the absence of gravitational aberration, assuming that gravity propagates at the speed of light.

It is the only physical theory of universal content which I am convinced will never be overthrown, within the framwork of applicability of its basic concepts.

Albert Einstein on Thermodynamics

Cite this paper
B. Lavenda, "Cosmic Illusions," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 7-19. doi: 10.4236/jmp.2013.47A1002.
[1]   B. H. Lavenda, “Statistical Physics: A Probabilistic Approach,” Wiley-Interscience, New York, 1991, p. 75.

[2]   M. Planck, “Physikalische Abhandlungen und Vortrage,” Braunschweig, Friedr. Vieweg & Sohn, 1958, p. 599.

[3]   H. P. Robertson and T. W. Noonan, “Relativity and Cosmology,” W. B. Saunders, Philadelphia, 1968, p. 374.

[4]   L. S. Schulman, “Techniques and Applications of Path Integration,” Wiley-Interscience, New York, 1981, p. 229.

[5]   B. H. Lavenda, “A New Perspective on Relativity: An Odyssey in Non-Euclidean Geometries,” World Scientific, Singapore, 2011.

[6]   P. M. Ashling and P. W. Milonni, American Journal of Physics, Vol. 72, 2004, pp. 1524-1529.

[7]   I. S. Gradshteyn and I. M. Ryzhik, “Table of Integrals, Series, and Products,” Academic Press, Orlando, 1980.

[8]   W. G. Unruh, Physical Review, Vol. D14, 1976, pp. 870-892.

[9]   S. W. Hawking, Nature, Vol. 248, 1974, pp. 30-31.

[10]   J. D. Bekenstein, Physical Review, Vol. D7, 1973, pp. 2333-2346.

[11]   K. S. Thorne, R. H. Pope and D. A. Macdonald, “Black Holes: The Membrane Paradgim,” Yale U. P., New Haven CT, 1986, p. 39.

[12]   D. N. Page, “Hawking Radiation and Black-Hole Thermodynamics,” 2004, arXiv:hep-th/0409024v3.

[13]   L. D. Landau and E. M. Lifshitz, “Statistical Physics,” 2nd Edition, Pergamon, Oxford, 1969, p. 72.

[14]   J. D. Bekenstein, Physical Review, Vol. D23, 1981, pp. 287-298.

[15]   G. H. Hardy, J. E. Littlewood and G. Pólya, “Inequalities,” 2nd Edition, Cambridge U. P., Cambridge, 1952, p. 77.

[16]   B. H. Lavenda, “Thermodynamics of Extremes,” Albion, Chicester, 1995.

[17]   J. T. Vanderslice, H. W. Schamp Jr. and E. A. Mason, “Thermodynamics,” Prentice-Hall, Englewood Cliffs, 1966, p. 146.

[18]   P. J. E. Peebles, “Principles of Physical Cosmology,” Princeton U. P., Princeton, 1993, p. 392.

[19]   L. D. Landau and E. M. Lifshitz, “The Classical Theory of Fields,” 4th Edition, Pergamon, Oxford, 1975, p. 361.

[20]   E. W. Kolb and M. S. Turner, “The Early Universe,” Addison-Wesley, Reading, 1990, p. 49.

[21]   H. Einbinder, Physical Review, Vol. 74, 1948, pp. 805-808. doi:10.1103/PhysRev.74.805

[22]   B. H. Lavenda, “A New Perspective on Thermodynamics,” Springer, New York, 2009, § 6.2.

[23]   P. Moon and D. E. Spencer, “Partial Differential Equations,” D. C. Heath, Lexington, 1969, p. 87.

[24]   B. H. Lavenda and J. Dunning-Davies, Foundations of Physics Letters. Vol. 5, 1992, pp. 191-196.

[25]   A. H. Guth, Physical Review, Vol. D23, 1981, pp. 347-356.

[26]   A. D. Linde, Physics Letters, Vol. B108, 1982, pp. 389-393.

[27]   A. Albrecht and P. J. Steinhardt, Physical Review Letters, Vol. 48, 1982, pp. 1220-1223.

[28]   L. D. Landau and E. M. Lifshitz, “Fluid Mechanics,” Pergamon, Oxford, 1959, p. 501.

[29]   W. de Sitter, “On the Relativity of Rotation,” Proceedings of KNAW, Vol. 19, 1917, pp. 527-532.

[30]   R. Sexl and H. Sexl, “White Dwarfs and Black Holes,” Academic Press, New York, 1979, p. 55.

[31]   M. Ibison, H. E. Puthoff and S. R. Little, “The Speed of Gravity Revisited,” Preprint Physics/9910050.

[32]   T. Van Flandern, Physics Letters, Vol. A250, 1998, pp. 1-11.

[33]   M. Krizek and A. Solcová, “How to Measure Gravitational Aberration,” In W. Hartkopf, P. Harmanec and E. Guinan, Eds., Binary Stars as Critical Tools & Tests in Contemporary Astrophysics: Proceedings of the 240th Symposium of the International Astronomical Union, Prague, 22-25 August 2006, Cambridge U. P., Cambridge, 2007, p. 389.