NS  Vol.2 No.11 , November 2010
Contribution to the understanding effects of weak electrical phenomena
ABSTRACT
Electronic emission spectra of N2, (N2)2, (N2)5 O2, (O2)2, (O2)5, H2O, (H2O)5, CO2, (CO2)2, CO2..H2O, NH3 and NH3.H2O situated in the electric field of 0.001, 0.005, 0.01 0.05 and 0.1 a.u. were simulated involving Monte Carlo optimization followed by the ZINDO/S approach. The simulated spectra showed irregular dependence on the energy of the electric field applied. Molecules without influence of the electric field emit in the vacuum ultraviolet region. Applied electric field only in case of (O2)5 generated transitions above 200 nm. The mapping of isosurface of the investigated molecules revealed that the electric field applied redistributed the charge densities in the molecules in the manner approximately parallel to the energy of the field. Applied electrical field resulted in an increase in the water acidity and ammonia basicity.

Cite this paper
Mazurkiewicz, J. and Tomasik, P. (2010) Contribution to the understanding effects of weak electrical phenomena. Natural Science, 2, 1195-1210. doi: 10.4236/ns.2010.211148.
References
[1]   Ponne, C.T, and Bartels, P.V. (1995) Interaction of electromagnetic energy with biological material, relation to food processing. Radiation Physics and Chemistry, 45 591-607.

[2]   Grosse, H.-H., Bauer E. and Berg H. (1988) Electrostimulation during fermentation. Bioelectrochem Bio- energetics, 20, 219-285.

[3]   Nakanishi, K., Tokuda, H., Soga, T., Yoshinaga, T. and Takeda, M. (1998) Effect of electric current on growth and alcohol production by yeast cells. Journal of Fermentation and Bioengineering, 85, 250-253.

[4]   Nechitailo, G. and Gordeev, A. (2001) Effect of artificial electric fields on plants grown under microgravity conditions. Advances in Space Research, 28, 629-631.

[5]   Goldman, M., Goldman, A. and Sigmond, R.S. (1985) The corona discharge, its properties and specific uses. Pure and Applied Chemistry, 57, 1353-1362.

[6]   van Veldhuizen, E.M. (1999) Electrical discharges for environmental purposes: Fundamentals and applications. Nova Science Publishers, New York.

[7]   Penney, G.W. and Hummert, G.T. (1970) Photoionization measurements in air, oxygen and nitrogen. Journal of Applied Physics, 41, 572-577.

[8]   Raether, H. (1939) The development of electron avalanche in a spark channel (from observations in a cloud chamber). Zeitschrift fur Physik, 112, 464-472.

[9]   van Veldhuizen, E.M., Baede, A.H.F.M., Hayashi, D. and Rutgers, W.R. (2001) Fast imaging of streamer propagation. Proceedings of APP Spring Meeting, Bad Honnef, 2001, 231-234.

[10]   Starikovskaia, S.M., Starikovskii, A.Y. and Zatsepin, D.V. (1998) The development of a spatially uniform fast ionization wave in a large discharge volume. Journal of Physics D: Applied Physics, 31, 1118-1125.

[11]   Mesyats, G.A., Bychkov, Y.I. and Kremnev, V.V. (1972) Pulsed nanosecond electric discharges in gases. Soviet Physics Uspekhi, 15, 282-297.

[12]   Creyghton, Y.L.M., van Veldhuizen, E.M. and Rutgers, W.R. (1993) Electrical and optical study of pulsed positive corona. In: Penetrante, B.M. and Schultheis, S.E. Eds., Non-Thermal Plasmas for Pollution Control, NATO ASI Series, Subseries G, 34, p. 205.

[13]   Kondo, K. and Ikuta, N. (1980) Highly resolved observation of the primary wave emission in atmospheric positive-streamer corona. Journal of Physics D: Applied Physics, 13, L33.

[14]   Tochikubo, F. and Teich, T.H. (2000) Optical emission from a pulsed corona discharge and its associated reactions. Japanese Journal of Applied Physics, 39, 1343- 1350.

[15]   Lii, C.Y., Liao, G.D., Stobinski, L. and Tomasik, P. (2003) Effect of corona discharges on granular starches. Journal of Food Agriculture and Environment, 1, 143-149.

[16]   Liu, C.J. and Zou, J.J. (2004) Hydrolysis of starch catalyzed by dielectric barrier discharge plasma and definition of plasma acid. Chemical Abstracts Service, 142, 189-192

[17]   Oohara, W., Nakahata, M. and Hatakeyama, R. (2006) Alkali-halogen plasma generation using alkali salt. Japanese Journal of Applied Physics, Part 1, 45, 8075- 8079.

[18]   Hong, Y.C. Shin, D.H. and Uhm, H.S. (2007) Super-hydrophobicity of multi-walled carbon nanotubes treated by a glow discharge. Surface and Coatings Technology. 201, 5025-5029.

[19]   Oohara, W., Nakahata, M. and Hatakeyama, R. (2006), Alkali-halogen plasma generation by dc magnetron discharge. Applied Physics Letters, 88, 191501-191501-3.

[20]   Khare, B., Wilhite, P., Tran, B., Teixeira, E., Fresquez, K., Mvondo, D.N., Bauschlicher, C. and Meyyappan, M (2005) Functionalization of carbon nanotubes via nitrogen glow discharge. The Journal of Physical Chemistry B, 109, 23466-23472.

[21]   Mazurkiewicz, J. and Tomasik, P. (1996) Perestroika effect, a novel example of electroviscosity. Bulletin of the Chemical Society Belges, 105, 173-180.

[22]   Keller-Rudek, H. and Moortget, G.K. (2010) MPI-Mainz- UV-VIS spectral atlas of gaseous molecules. http://www.atmosphere.mpg.de/enid/974q119a844eae7e6b33851ca499,o/Spectral/Catalogue_Spectra_5p4.html

[23]   Vieitez, M.O., Ivanov, T.I., Ubachs, W., Lewis, B.R. and de Lange, C.A. (2008) On the complexity of the absorption spectrum of molecular nitrogen. Journal of Molecular Liquids, 141, 110-117.

[24]   Bernath, P.F. (2002) The spectroscopy of water vapour: Experiment, theory and applications. Physics Chemistry Chemical Physics, 4, 1501-1509.

[25]   Zerner, M.C. (1991) Reviews of computational chemistry. In: Lipkowitz, K.B. and Boyd, D.B. Eds., VCH Publishing, New York, 2, 313-366.

[26]   Brzozowski, K., Rodziewicz-Motowid?o, S., ??gowska, A. and Rolka, K. (2002) Conformational solution studies of selective agonist of NK-2 receptor - NAA, using NMR spectroscopy and global Monte Carlo analysis. Polish Journal Chemistry, 76, 807-814.

[27]   M. Chaplin (2010) Water structure and science, http:// www1.bbu.ac.uk/water/vibrat.html

 
 
Top