NS  Vol.5 No.1 , January 2013
Effect of a novel compound from Lycopodium obscurum L. on osteogenic activity of osteoblasts in vitro
ABSTRACT
We investigated the potential of an extract of Lycopodium obscurum L.; stigmastane-3-oxo- 21-oic acid (SA), to enhance osteogensis of mouse osteoblastic MC3T3-E1 cells. SA at a concentration of 16 μM was found to have no significant effect upon the viability of the cells, thus concentrations of 8 μM and 16 μM of SA were used in all further experiments. Both concentrations of SA had an inhibitory affect upon alkaline phosphatase activity (ALP) after 8 days incubation, however, after 16 days activity was restored to control levels. However Alizarin red S staining showed increased levels of mineralization for both concentrations after 16 days culture. Real time PCR showed inhibition of genes Runx2 and Osterix genes responsible for the up-regulation of ALP. However early time point (8 days) up-regulation of bone matrix mineralization genes OPN and OCN, and late time point (16 days) up-regulation of both Jun-D and Fra-2 mRNA expression was significantly enhanced. These results suggest a potential mechanism of SA in enhancing bone fracture healing is through the up-regulating bone matrix mineralization.

Cite this paper
Wang, C. , Wu, R. , Yang, G. , Blackwood, K. , Friis, T. , Hutmacher, D. and Woodruff, M. (2013) Effect of a novel compound from Lycopodium obscurum L. on osteogenic activity of osteoblasts in vitro. Natural Science, 5, 84-92. doi: 10.4236/ns.2013.51014.
References
[1]   Fang, Z.X. and Liao, C.L. (2006) A survey of medicinal plants of Enshi, Hubei Province. Hubei Science and Technology Press, Wuhan, 31.

[2]   Yongfei, G and Hui, H. (2003) An observation of the general therapeutic effect of bone fracture resulted from osteoporosis. Guangxi Medical Journal, 25, 2520-2521.

[3]   Weihong, H. and Shaoji. H. (2000) Examples of Yang He Tang in curing bone injury. Fujian Journal of Traditional Chinese Medicine, 31, 47-48.

[4]   Teng, C.C., et al. (2008) Research advancement about chemical composition and pharmacological actions of Lycooodium japanicum Thunb. Medical Recapitulate, 14, 3174-3175.

[5]   Li, X.-L., Zhao, Y., Cheng, X., Tu, L., Peng, L.-Y., Xu, G. and Zhao, Q.-S. (2006) Japonicumins A-D: Four new compounds from Lycopodiam japonicum. Helvetica Chimica Acta, 89, 1467-1473. doi:10.1002/hlca.200690148

[6]   Yan, J., Zhang, X.-M., Li, Z.-R., Zhou, L., Chen, J.-C., Sun, L.-R. and Qiu, M.-H. (2005) Three new triterpenoids from Lycopodium japonicum THUNB. Helvetica Chimica Acta, 88, 240-244. doi:10.1002/hlca.200590004

[7]   Zhao, Y.-H., Deng, T.-Z., Chen, Y., Liu, X.-M. andYang, G.-Z. (2010) Two new triterpenoids from Lycopodium obscurum L. Journal of Asian Natural Products Research, 12, 666-671. doi:10.1080/10286020.2010.493881

[8]   Fisher, L.W. and Termine, J.D. (1985) Noncollagenous proteins influencing the local mechanisms of calcification. Clinical Orthopaedics, 200, 362-385.

[9]   Mundlos, S., Otto, F., Mundlos, C., Mulliken, J.B., Aylsworth, A.S., Albright, S., Lindhout, D., Cole, W.G., Henn, W., Knoll, J.H.M., Owen, M.J., Mertelsmann, R., Zabel, B.U. and Olsen, B.R. (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell, 89, 773-779. doi:10.1016/S0092-8674(00)80260-3

[10]   Sun, D.M., Liu, Z.-B., Zhao, Y., Gong, Z.-W., Li, D., Wang, X.-Y., Zeng, X.L. and Liu, W.-G. (2006) Runx2 is involved in regulating osterix promoter activity and gene expression. Progress in Biochemistry and Biophysics, 33, 957-964.

[11]   Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z.P., Deng, J.M., Behringer, R.R. and de Crombrugghe, B. (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 108, 17-29. doi:10.1016/S0092-8674(01)00622-5

[12]   Ohyama, Y., Nifuji, A., Maeda, Y., Amagasa, T. and Noda, M. (2004) Spaciotempora association and bone morphogenetic protein regulation of selerostin and ostetix expression during embryonic esteogenesis. Endocrinology, 10, 4685-4692. doi:10.1210/en.2003-1492

[13]   Owen, T.A., Aronow, M., Shalhoub, V., Barone, L.M., Wilming, L., Tassinari, M.S., Kennedy, M.B., Pockwinse, S., Lian, J.B. and Stein, G.S. (1990) Progressive development of the rat osteoblast phenotype in vitro: Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. Journal of Cellular Physiology, 143, 420-430. doi:10.1002/jcp.1041430304

[14]   Pockwinse, S.M., Wilming, L.G., Conlon, D.M., Stein, G.S. and Lian, J.B. (1992) Expression of cell growth and bone specific genes at single cell resolution during development of bone tissue-like organization in primary osteoblast cultures. Journal of Cellular Biochemistry, 49, 310-323. doi:10.1002/jcb.240490315

[15]   Fallon, M.D., Whyte, M.P. and Teitelbaum, S.L. (1980) Stereospecific inhibition of alkaline phosphatase by Ltetramisole prevents cartilage calcification. Laboratory Investigation, 43, 489-494.

[16]   Leea, S.-U., Parkb, S.-J., Kwakd, H.B., Ohd, J., Mina, Y.K. and Kima, S.H. (2008) Anabolic activity of ursolic acid in bone: Stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo. Pharmacological Research, 58, 290-296. doi:10.1016/j.phrs.2008.08.008

[17]   Stein, G.S., et al. (1992) Mechanisms regulating osteoblast proliferation and differentiation. In: Bilezikian, J.P., Raisz, L.G. and Rodan, G.A., Eds., Principle of Bone Biology, Academic Press, London, 71.

[18]   Oldberg, A., Franzén, A. and Heineg?rd, D. (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proceedings of the National Academy of Sciences of USA, 83, 8819-8823. doi:10.1073/pnas.83.23.8819 PMid:3024151 PMCid:387024

[19]   Prince, C.W., Oosawa, T., Butler, W.T., Tomana, M., Bhown, A.S., Bhown, M. and Schrohenloher, R.E. (1987) Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. Journal of Biological Chemistry, 262, 2900-2907.

[20]   Reinholt, F.P., Hultenby, K., Oldberg, A. and Heineg?rd, D. (1990) Osteopontin—A possible anchor of osteoclasts to bone. Proceedings of the National Academy of Sciences of USA, 87, 4473-4475. doi:10.1073/pnas.87.12.4473

[21]   Wagner, E.F. (2002) Functions of AP-1 (fos/Jun) in bone development. Annals of the Rheumatic Diseases, 61, 40- 42.

[22]   McCabe, L.R., Banerjee, C., Kundu, R., Harrison, R.J., Dobner, P.R., Stein, J.L., Lian, J.B. and Stein, G.S. (1996) Developmental expression and acticities of specific fos and jun proteins are functionally related to osteoblast maturation: Role of Fra-2 and Jun D during differentiation. Endocrinology, 137, 4398-4408. doi:10.1210/en.137.10.4398

[23]   Sabatakos, G., Sims, N.A., Chen J., Aoki K., Kelz, M.B., Amling, M., Bouali, Y., Mukhopadhyay, K., Ford, K., Nestler, E.J. and Baron, R. (2000) Increased bone formation and osteosclerosis in mice overexpressing the transcripttion factor Fra-1. Natature Medicine, 6, 985-990. doi:10.1038/79683

[24]   Oldberg, A., Franzen, A. and Heinegkd, D. (1988) The primary structure of a cell-binding bone sialoprotein. Journal of Biological Chemistry, 263, 19430-19432.

[25]   Chen, J.K., Shapiro, H.S. and Sodek, J. (1992) Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. Journal of Bone and Mineral Research, 7, 987-997. doi:10.1002/jbmr.5650070816

[26]   Malaval, L. Liu, F., Roche, P. and Aubin, J.E. (1999) Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. Journal of Biological Chemistry, 74, 16-27. doi:10.1002/(SICI)1097-4644(19990915)74:4<616::AID-JCB11>3.0.CO;2-Q

 
 
Top