NS  Vol.2 No.9 , September 2010
Impact of phonon-assisted tunneling on electronic conductivity in graphene nanoribbons and oxides ones
ABSTRACT
Phonon-assisted tunneling (PhAT) model is applied for explication of temperature-dependent conductivity and I-V characteristics measured by various investigators for graphene nanoribbons and oxides ones. Proposed model describes well not only current dependence on temperature but also the temperature-dependent I-V data using the same set of parameters characterizing material under investigation. The values of active phonons energy and field strength for tunneling are estimated from the fit of current dependence on temperature and I-V/T data with the phonon-assisted tunneling theory.

Cite this paper
Pipinys, P. and Kiveris, A. (2010) Impact of phonon-assisted tunneling on electronic conductivity in graphene nanoribbons and oxides ones. Natural Science, 2, 979-983. doi: 10.4236/ns.2010.29119.
References
[1]   Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.

[2]   Service, R.F. (2009) Carbon sheets an atom thick give rise to graphene dreams. Science, 324(5929), 875-877.

[3]   Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009) The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162.

[4]   Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N. and de Heer, W.A. (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191-1196.

[5]   Han, M.Y., ?zyilmaz, B., Zhang, Y. and Kim, P. (2007) Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98(20), 206805.

[6]   Yan, Q., Huang, B., Yu, J., Zheng, F., Zang, J., Wu, J., Gu, B.-L., Liu, F. and Duan, W. (2007) Intrinsic current- voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Letters, 7(6), 1469- 1473.

[7]   Murali, R., Yang, Y., Brenner, K., Beck, T. and Meindl, J.D. (2009) Breakdown current density of graphene nanoribbons. Applied Physics Letters, 94(24), 243114.

[8]   Li, Z., Qian, H., Wu, J., Gu, B.-L. and Duan, W. (2008) Role of symmetry in the transport properties of graphene nanoribbons under bias. Physical Review Letters, 100 (20), 206802.

[9]   Rosales, L., Orellana, P., Barticevic, Z. and Pacheco, M. (2008) Transport properties of graphene nanoribbon heterostructures. Microelectronics Journal, 39(3-4), 537-540.

[10]   Rigo, V.A., Martins, T.B., da Silva, A.J.R., Fazzio, A. and Miwa, R.H. (2009) Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B, 79(7), 075435.

[11]   Sinitskii, A., Fursina, A.A., Kosynkin, D.V., Higginbotham, A.L., Natelson, D. and Tour, J.M. (2009) Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes. Applied Physics Letters, 95(25), 253108.

[12]   Xie, Y.E., Chen, Y.P. and Zhong, J.X. (2009) Electron transport of folded graphene nanoribbons. Journal of Applied Physics, 106(10), 103714.

[13]   Han, M.Y., Brant, J.C. and Kim. P. (2010) Electron transport in disordered graphene nanoribbons. Physical Review Letters, 104(5), 056801.

[14]   Zhang, Y.-Y., Hu, J.-P., Xie, X.C., Liu, W.M. (2009) Abnormal electronic transport in disordered graphene nano- ribbon. Physica B: Condensed Matter, 404(16), 2259- 2262.

[15]   Molitor, F., Stampfer, C., Güttinger, J., Jacobsen, A., Ihn, T. and Ensslin, K. (2010) Energy and transport gaps in etched graphene nanoribbons. Semiconductor Science and Technology, 25(3), 034002.

[16]   Ihnatsenka, S. and Kirczenow, G. (2009) Conductance quantization in strongly disordered graphene ribbons. Physical Review B, 80(20), 201407(R).

[17]   Lian, Ch., Tahy, K., Fang, T., Li, G., Xing, H.G. and Jena, D. (2010) Quantum transport in graphene nanoribbons patterned. Applied Physics Letters, 96(10), 103109.

[18]   Jiménez, D. (2008) A current-voltage model for Schottky-barrier graphene-based transistors. Nanotechnology, 19(34), 345204.

[19]   Wakabayashi, K., Takane, Y., Yamamoto, M. and Sigrist, M. (2009) Electronic transport properties of graphene nanoribbons. New Journal of Physics, 11(9), 095016.

[20]   Jung, I., Dikin, D.A., Piner, R.D. and Ruoff, R.S. (2008) Tunable electrical conductivity of individual graphene oxide sheets reduced at “Low” temperatures. Nano Letters, 8(12), 4283-4287.

[21]   Gómez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M. and Kern, K. (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 7(11), 3499- 3503.

[22]   Kaiser, A.B., Gómez-Navarro, C., Sundaram, R.S., Burghard, M. and Kern, K. (2009) Electrical conduction mechanism in chemically derived graphene monolayers. Nano Letters, 9(5), 1787-1792.

[23]   Jin, M., Jeong, H.-K., Yu, W.J., Bae, D.J., Kang, B.R. and Lee, Y.H. (2009) Graphene oxide thin film field effect transistors without reduction. Journal of Physics D: Applied Physics, 42(13), 135109.

[24]   Shao, Q., Liu, G., Teweldebrhan, D. and Balandin, A.A. (2008) High-temperature quenching of electrical resistance in graphene interconnects. Applied Physics Letters, 92(20), 202108.

[25]   Pipinys, P., Rimeika, A. and Lapeika, V. (2004) DC conduction in polymers under high electric field. Journal of Physics D: Applied Physics, 37(6), 828-831.

[26]   Pipinys, P. and Kiveris, A. (2008) Phonon-assisted tunnelling in electrical conductivity of individual carbon nanotubes and networks ones. Physica B: Condensed Matter, 403(19-20), 3730-3733.

[27]   Kiveris, A., Kud?mauskas ?. and Pipinys P. (1976) Release of electrons from traps by an electric field with phonon participation. Physica Status Solidi A, 37(1), 321- 327.

[28]   Popov, V.N., Henrard, L. and Lambin, P. (2005) Electron-phonon and electron-photon interactions and resonant Raman scattering from the radial-breathing mode of single-walled carbon nanotubes. Physical Review B, 72(3), 035436.

[29]   Wang, D.P., Feldman, D.E., Perkins, B.R., Yin, A.J., Wang, G.H., Xu, J.M. and Zaslavsky, A. (2007) Hopping conduction in disordered carbon nanotubes. Solid State Communication, 142(5), 287-291.

[30]   Kaiser, A.B. and Park, Y.W. (2005) Current-voltage characteristics of conducting polymers and carbon nanotubes. Synthetic Metals, 152(1-3), 181-184.

 
 
Top