JMP  Vol.3 No.12 , December 2012
Determination of the Vibro-Rotational Constants, the Dipole Moment’s Function and the Intensities of the HTO’s ν1 (ν3 by Usual Convention) Band
ABSTRACT
In the first part of this paper, an analysis of the high-resolution spectrum of the HTO molecule ν1(ν3) band, from 3630 to3950 cm1, was undertaken. The rotational transition of this band was assigned using combination differences. Their wavenumbers were analyzed with a least squares fit program in order to obtain spectroscopic constants. A perturbed state has been evidenced. In the second part, with a view towards building a spectroscopic data base, a calculation of the dipolar momentum function was undertaken.

Cite this paper
M. Tine, D. Kobor, I. Sakho and L. Coudert, "Determination of the Vibro-Rotational Constants, the Dipole Moment’s Function and the Intensities of the HTO’s ν1 (ν3 by Usual Convention) Band," Journal of Modern Physics, Vol. 3 No. 12, 2012, pp. 1945-1957. doi: 10.4236/jmp.2012.312243.
References
[1]   M. Born and J. R. “Oppenheimer, Quantum Theory of the Molecules,” Annalen der Physik, Vol. 84, 1927, pp. 457-484. doi:10.1002/andp.19273892002

[2]   A. Messiah, “Mécanique Quantique,” Dunod, Paris, 1964.

[3]   B. T. Darling and D. M. Dennison, “The Water Vapor Molecule,” Physical Review, Vol. 57, No. 2, 1940, pp. 128-139. doi:10.1103/PhysRev.57.128

[4]   J. K. G. Watson, “Simplification of the Molecular Vibration-Rotation Hamiltonian,” Molecular Physics, Vol. 15, No. 5, 1968, pp. 479-490. doi:10.1080/00268976800101381

[5]   G. Amat, H. H. Nielsen and G. Tarrago, “Vibration-Rotation Polyatomique of Molecules,” Dekker, New York, 1971.

[6]   H. Patridge and D. W. Schwenke, “The Determination of an Accurate Isotope Dependent Potential Energy Surface for Water from Extensive Ab Initio Calculations and Experimental Data,” Journal of Chemical Physics, Vol. 106, No. 11, 1997, pp. 4618-4639. doi:10.1063/1.473987

[7]   A. Perrin, J. M. Flaud and. C. Camy-Peyret, “Calculated Energy Levels and Intensities for the ν1 and 2ν2 Bands of HDO,” Journal of Molecular Spectroscopy, Vol. 112, No. 1, 1985, pp. 153-162. doi:10.1016/0022-2852(85)90200-0

[8]   J. M. Flaud, C. Camy-Peyret and J. P. Millard, “Higher Ro-Vibrational Levels of H 2O Deduced from High Resolution Oxygen-Hydrogen Flame Spectra between 2800-6200 cm?1,” Molecular Physics, Vol. 32, No. 2, 1976, pp. 499-521. doi:10.1080/00268977600103251

[9]   R. A. Toth and J. W. Brault, “Line Positions and Strengths in the (001), (110) and (030) Bands of HDO,” Applied Optics, Vol. 22, No. 6, 1983, pp. 908-926. doi:10.1364/AO.22.000908

[10]   C. Camy-Peyret and J. M. Flaud, “Line Positions and Intensities in the υ2 band of H216O,” Molecular Physics, Vol. 32, 1976, pp. 523-537. doi:10.1080/00268977600103261

[11]   O. N. Ulenikov, V. N. Cherepanov, and A. B. Malikova, “On Analysis of the ν2 Band of the HTO Molecule,” Journal of Molecular Spectroscopy, Vol. 146, No. 1, 1991, pp. 97-103. doi:10.1016/0022-2852(91)90373-I

[12]   R. A. Toth and J. W. Brault, “HD16O, HD18O, and HD17O Transition Frequencies and Strengths in the ν2 Bands,” Journal of Molecular Spectroscopy, Vol. 162, No. 1, 1993, pp. 20-40. doi:10.1006/jmsp.1993.1266

[13]   http://www.chem.qmul.ac.uk/iupac/

[14]   B. S. Ray, “Eigenvalues of an Asymmetrical Rotator,” Zeitschrift für Physik, Vol. 78, 1932, pp. 74-91. doi:10.1007/BF01342264

[15]   P. R. Bunker, “Molecular Symmetry and Spectroscopy,” Academic Press, Waltham, 1979.

[16]   A. R. Edmonds, “Angular Momentum in Quantum Mechanics,” Princeton University Press, Princeton, 1960.

[17]   R. S. Mulliken, “Species Classification and Rotational Energy Level Patterns of Non-Linear Triatomic Molecules,” Physical Reviews, Vol. 59, No. 11, 1941, pp. 873-889. doi:10.1103/PhysRev.59.873

[18]   J. K. G. Watson, “Determination of Centrifugal Distortion Coefficients of Asymmetric-Top Molecules,” Journal of Chemical Physics, Vol. 46, No. 5, 1967, pp. 1935-1949. doi:10.1063/1.1840957

[19]   J. K. G. Watson, “Determination of Centrifugal-Distortion Coefficients of Asymmetric-Top Molecules. II. Dreizler, Dendl, and Rudolph’s Results,” Journal of Chemical Physics, Vol. 48, No. 1, 1968, pp. 181-185. doi:10.1063/1.1667898

[20]   J. K. G. Watson, “Determination of Centrifugal Distortion Coefficients of Asymmetric-Top Molecules. III. Sextic Coefficients,” Journal of Chemical Physics, Vol. 48, No. 10, 1968, pp. 4517-4524. doi:10.1063/1.1668020

[21]   P. Helminger, F. C. De Lucia, W. Gordy, P. A. Straats, and H. W. Morgan, “Millimeter- and Submillimeter-Wavelength Spectra and Molecular Constants of HTO and DTO,” Physical Review A, Vol. 10, No. 4, 1974, pp. 1072-1081. doi:10.1103/PhysRevA.10.1072

[22]   E. Bright Wilson, J. C. Decius and Paul C. Cross, “Molecular Vibration. The Theory of Infrared and Raman Vibrational Spectra,” McGraw-Hill Book Company, New York, 1955.

[23]   J. M. Flaud and C. Camy-Peyret, “Vibration-Rotation Intensities in H2O-Type Molecules Application to the 2ν2, ν1, and ν3 bands of H216O,” Journal of Molecular Spectroscopy, Vol. 55, No. 1-3, 1975, pp. 278-310. doi:10.1016/0022-2852(75)90270-2

 
 
Top