Solving high-order nonlinear Volterra-Fredholm integro-differential equations by differential transform method
ABSTRACT
In this paper, we apply the differential transformation method to high-order nonlinear Volterra- Fredholm integro-differential equations with se- parable kernels. Some different examples are considered the results of these examples indi-cated that the procedure of the differential transformation method is simple and effective, and could provide an accurate approximate solution or exact solution.

Cite this paper
Behiry, S. and Mohamed, S. (2012) Solving high-order nonlinear Volterra-Fredholm integro-differential equations by differential transform method. Natural Science, 4, 581-587. doi: 10.4236/ns.2012.48077.
References
[1]   Kythe, P.K. and Puri, P. (1992) Computational methods for linear integral equations. University of New Orleans, New Orleans.

[2]   Wazwaz, A.M. (2006) A comparison study between the modified decomposition method and traditional method. Applied Mathematics and Computation, 181, 1703-1712. doi:10.1016/j.amc.2006.03.023

[3]   Rashed, M.T. (2004) Numerical solution of functional differential, integral and integro-differential equations. Applied Numerical Mathematics, 156, 485-492.

[4]   Razzaghi, M. and Yousefi, S. (2005) Legendre wavelets method for nonlinear Volterra-Fredholm integral equations. Mathematics and Computers in Simulation, 70, 1-8. doi:10.1016/j.matcom.2005.02.035

[5]   Maleknejed, K. and Mirzaee, F. (2006) Numerical solution of integro-differential equations by using rationalized Haar functions method. Kyber-netes, 35, 1735-1744. doi:10.1108/03684920610688694

[6]   Reihani, M.H. and Abadi, Z. (2007) Rationalized Haar functions method for solving Fredholm and Volterra integral equations. Journal of Computational and Applied Mathematics, 200, 12-20. doi:10.1016/j.cam.2005.12.026

[7]   Darania, P., Abadian, E. and Oskoi, A.V. (2006) Linearization method for solving non-linear integral equations. Mathematical Problems in Engineering, 1-10. doi:10.1155/MPE/2006/73714

[8]   Zhao, J. and Corless, R.M. (2006) Compact finite difference method for integro-differential equations. Applied Mathematics and Computation, 177, 271-288. doi:10.1016/j.amc.2005.11.007

[9]   Abbasbandy, S. and Taati, A. (2009) Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the operational Tau method and error estimation. Journal of Computational and Applied Mathematics, 231, 106-113. doi:10.1016/j.cam.2009.02.014

[10]   Ebadi, G., Rahimi-Ardabili, M. Y. and Shahmorad, S. (2007) Numerical solution of the nonlinear Volterra integro-differential equations by the Tau method. Applied Mathematics and Computation, 188, 1580-1586. doi:10.1016/j.amc.2006.11.024

[11]   Maleknejad, K., Basirat, B. and Hashemizadeh, E. (2011) Hybrid Legendre polynomials and Block-pulse functions approach for nonlinear Volterra-Fredholm integro-differential equations. Computers & Mathematics with Applications, 61, 2821-2828. doi:10.1016/j.camwa.2011.03.055

[12]   Wazwaz, A.M. (2010) The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations. Applied Mathematics and Computation, 216, 1304-1309. doi:10.1016/j.amc.2010.02.023

[13]   Araghi, M.A. and Behzadi, Sh.S. (2009) Solving nonlinear Volterra-Fredholm integro-differential equations using the modified Adomian decomposition method. Computational Methods in Applied Mathematics, 9, 321-331.

[14]   Darania, P. and Ivaz, K. (2008) Numerical solution of nonlinear Volterra-Fredholm integro-differential equations. Applied Mathematics and Computation, 56, 2197- 2209. doi:10.1016/j.camwa.2008.03.045

[15]   Maleknejad, K. and Mohmoudi, Y. (2003) Taylor Polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations. Applied Mathematics and Computation, 145, 641-653. doi:10.1016/S0096-3003(03)00152-8

[16]   Yalcinbas, S. (2002) Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations. Applied Mathematics and Computation, 127, 195-206. doi:10.1016/S0096-3003(00)00165-X

[17]   Yüzbasi, S., Sahin, N. and Yildirim, A. (2012) A collocation approach for solving high-order linear Fredholm-Volterra integro-differential equations. Mathematical and Computer Modelling, 55, 547-563. doi:10.1016/j.mcm.2011.08.032

[18]   Zhou, J.K. (1986) Differential transformation and its applications for electrical circuits. Huazhong University Press, Wuhan.

[19]   Arikoglu, A. and Ozkol, I. (2005) Solution of boundary value problems for integro-differential equations by using differential transform method. Applied Mathematics and Computation, 168, 1145-1158. doi:10.1016/j.amc.2004.10.009

[20]   Arikoglu, A. and Ozkol, I. (2008) Solution of integral and integro-differential equation systems by using differential transform method. Computers & Mathematics with Applications, 65, 2411-2417. doi:10.1016/j.camwa.2008.05.017

[21]   Odibat, Z.M. (2008) Differential transform method for solving Volterra integral equation with separable kernels. Mathematical and Computer Modelling, 48, 1144-1149. doi:10.1016/j.mcm.2007.12.022

[22]   Biazar, J. and Eslami, M. (2011) Differential transform method for systems of Volterra integral equations of the second kind and comparison with homotopy perturbation method. International Journal of Physical Sciences, 6, 1207-1212.

[23]   Wang, W. (2006) An algorithm for solving the high-order nonlinear Volterra-Fredholm integro-differential equation with mechanization. Applied Mathematics and Computation, 172, 1-23. doi:10.1016/j.amc.2005.01.116

Top