NS  Vol.4 No.5 , May 2012
Theoretical DFT(B3LYP)/6-31+G(d) study on the prediction of the preferred interaction site of 3-methyl-4-pyrimidone with different proton donors
ABSTRACT
Theoretical calculations were carried out using the DFT/B3LYP/6-31+G(d) methodology in an attempt to predict the preferred interaction site of a polyfunctional heterocyclic base 3-methyl-4- pyrimidone molecule with a series of proton donors of different acidic strength, i.e. water, methanol, phenol, 1-naphtol, 2,4,5 trichlorophenol, pentachlorophenol, picric acid and hydrogen chlordide. Computed H-bond interaction energies (ΔEc), internuclear and intermolecular distances r(O…H) and r(O…O), infrared frequency shifts Δv(C=O) and (Δv(OH) are proved to be reliable parameters for predicting the preferred interaction site of 3-methyl-4-pyrimidone. These computational data suggest that the O-H…O=C complex is preferred with water, methanol, phenol, 1-naphtol, 2,4,5 trichlorophenol and pentachlorophenol. However, for H-bonding with stronger acids such as picric acid or hydrochloric acid, the computational data suggest that the H-bonding occurs at the N1 ring atom of 3-methyl-4-pyrimidone. In the O-H…O=C com- plex, where the H-bond at the carbonyl O-atom can be oriented “anti” (Ha) and “syn” (Hb) with respect to the N3 atom, the same computational data suggest a higher stability of the “anti-O” compared to the “syn-O” orientation.

Cite this paper
Muzomwe, M. , Maes, G. and Kasende, O. (2012) Theoretical DFT(B3LYP)/6-31+G(d) study on the prediction of the preferred interaction site of 3-methyl-4-pyrimidone with different proton donors. Natural Science, 4, 286-297. doi: 10.4236/ns.2012.45041.
References
[1]   Kasende, O. and Zeegers-Huyskens, Th. (1981) Hydrogen-bonding and the protonation site in 3-methyl-4-py- rimidone. Journal of Molecular Structure, 75, 201-207. doi:10.1016/0022-2860(81)85234-9

[2]   Kasende, O. and Zeegers-Huyskens, Th. (1984) Infrared study of hydrogen-bonded complexes involving phenol derivatives and polyfunctional bases. 2.3-methyl-4-pyri- midone, 1-methyl-2-pyrimidone, 1,4, 4-trimethylcytosine, and 1,3-dimethyluracil. Journal of Physical Chemistry, 88, 2636-2642. doi:10.1021/j150656a042

[3]   Kasende, O. and Zeegers-Huyskens, Th. (1984) Infrared spectra of protonated pyrimidine-derivatives in the solid- state. Spectroscopy Letters, 17, 783-801. doi:10.1080/00387018408075706

[4]   Muzomwe, Boeckx, B., Maes, G. and Kasende, O. (2011) Discrimination between OH..N and O-H..O=C complexes of 3-methyl-4 pyrimidone and methanol: A matrix- isolation FT-IR and theoretical DFT/B3LYP investigations. South African Journal of Chemistry, 64, 23-33.

[5]   Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti conelation energy formula into a functional of the electron density. Physical Review B, 37, 785- 792. doi:10.1103/PhysRevB.37.785

[6]   Becke, A.D. (1993) Density functional thermochemistry. III The role of exact exchange. Journal of Chemical Physics, 93, 5648-5648. doi:10.1063/1.464913

[7]   Parr, R.G. and Yang, W. (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York.

[8]   Latajka, Z. and Bouteiller, Y. (1994) Application of Density functional methods for the study of hydrogen-bonded systems: The hydrogen fluoride dimmer. Journal of Chemical Physics, 101, 9793-9799. doi:10.1063/1.467944

[9]   Novoa, J.J. and Sosa, C. (1995) Evaluation of the density approximation on the compoutation of hydrogen bond interactions. Journal of Physical Chemistry, 99, 15837- 15845. doi:10.1021/j100043a023

[10]   Planas, M., Lee, C. and Novoa, J.J. (1996) Kinetics of the proton transfer in X…(H2O)4 clusters (X=H2O, NH3, H2S and HCl): Evidence of a concerted mechanism. Journal of Physical Chemistry, 100, 16495-16501. doi:10.1021/jp960789t

[11]   Lundell, J. and Latajka, Z. (1997) Density functional study of hydrogen-bonded systems: the H2O-CO complex. Journal of Physical Chemistry, 101, 5004-5009. doi:10.1021/jp963727b

[12]   Mo, O., Yanez, M. and Elguero, J. (1997) Study of the methanol trimer potential energy surface. Journal of Chemical Physics, 107, 3592-3601. doi:10.1063/1.474486

[13]   Dkhissi, A., Adamowicz, L. and Maes, G. (2000) Density functional theory study of the hydrogen-bonded pyridine-H2O complex: A comparison with RHF and MP2 methods with experimental data. Journal of Physical Chemistry, 104, 2112-2119. doi:10.1021/jp9938056

[14]   Dkhissi, A., Adamowicz, L. and Maes, G. (2000) Hybrid density functional and ab initio studies of 2-Pyridone- (H2O) and 2-Pyridone-(H2O)2. Chemical Physics Letters, 324, 127-136. doi:10.1016/S0009-2614(00)00474-7

[15]   Boyd, S.I. and Boyd, R.J. (2007) A density functional study of methanol clusters. Journal of Chemical Theory and Computation, 3, 54-61. doi:10.1021/ct6002912

[16]   Parra, R.D. and Zeng, X.Z. (1999) hydrogen bonding and cooperative effects in mixed dimmers and trimers of methanol and trifluoromethanol: An ab itio study. Journal of Chemical Physics, 110, 6329-6338. doi:10.1063/1.478537

[17]   Bing, D., Kuo, J.-L., Suhara, K.-I., Fujii, A. and Mikami, N. (2009) Proton switch correlated with the morphological development of the hydrogen bond network in H+(CH3OH)m(H2O)1 (m = 1-9): An theoretical and infrared spectroscopic study. Journal of Physical Chemistry A, 113, 2323-2332. doi:10.1021/jp900066u

[18]   Mejia, S.M., Espinal, J.F. and Mondragon, F.-S. (2009) Cooperative effect on the structure and stability of (ethanol)3-water, (methanol)3-water heterotetramers and (ethanol)4, (methanol)4 tetramers. Journal of Molecular Structure (Theochem), 901, 186-193. doi:10.1016/j.theochem.2009.01.027

[19]   Palafox, M.A., Iza, N., De la Fuente, M. and Navarro, R. (2009) Simulation of the first hydration shell of nucleosides D4T and thymidine: Structures obtained using MP2 and DFT methods. Journal of Physical Chemistry B, 113, 2458-2476. doi:10.1021/jp806684v

[20]   Muzomwe, M. (2011) Influence of cooperativity, regioselectivity and stereoselectivity on the stability of complexes formed between methylpyrimidones bases and proton donors acids: A DFT/B3LYP/6-31 + G(d) and FT- IR in inert argon matrix study. Ph.D. Thesis, University of Kinshasa, Congo.

[21]   Chalasinski, G. and Szczesniak, M. (1994) Origins of structure and energetics of van der waals clusters from abinitio calculations. Chemical Reviews, 94, 1723-1765. doi:10.1021/cr00031a001

[22]   Ramaekers, R., Maes, G., Adamowicz, L. and Dkhissi, A. (2001) Matrix-isolation FT-IR study and theoretical calculations of the vibrational, taufomeric and H-bonding properties of hypoxanthine. Journal of Molecular Structure, 560, 205-221. doi:10.1016/S0022-2860(00)00733-X

[23]   Halls, M.D., Velkowski, J. and Schleger, H.B. (2001) Harmonic frequency scaling factors for hartree-fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theoretical Chemistry Accounts, 105, 413-421. doi:10.1007/s002140000204

[24]   Rauhut, G. and Pulay, P. (1995) Transferable scaling factors for density functional derived vibrational force fields. Journal of Physical Chemistry, 99, 3093-3100. doi:10.1021/j100010a019

[25]   Florián, J., Baumruk, V. and Leszczyński, J. (1996) IR and Raman spectra, tautomeric stabilities, and scaled quantum mechanical force fields of protonated cytosine. Journal of Physical Chemistry, 100, 5578-5589. doi:10.1021/jp953284w

[26]   Gutowski, M., Van Duijneveldt, F.B., Van Duijneveldt van de Rijdt, G.C.M. and Van Lenthe, J.H. (1993) Accuracy of the boys and Bernardi function counterpoise method. Journal of Chemical Physics,, 98, 4728-4738. doi:10.1063/1.465106

[27]   Boys, S.F. and Bernardi, F. (1970) the calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553-566. doi:10.1080/00268977000101561

[28]   Frisch, M.J.T.G.W., Schlegel, H.B, et al. (2004) Gaussian 03, Revision D.02, Version. Gaussian, Inc., Wallingford.

[29]   Allen, L.C. (1975) Simple model of hydrogen bonding. Journal of the American Chemical Society, 97, 6921- 6940. doi:10.1021/ja00857a001

 
 
Top