TEL  Vol.2 No.1 , February 2012
Spatio-Temporal Patterns for a Generalized Innovation Diffusion Model
ABSTRACT
We construct a model of innovation diffusion that incorporates a spatial component into a classical imitation-innovation dynamics first introduced by F. Bass. Relevant for situations where the imitation process explicitly depends on the spatial proximity between agents, the resulting nonlinear field dynamics is exactly solvable. As expected for nonlinear collective dynamics, the imitation mechanism generates spatio-temporal patterns, possessing here the remarkable feature that they can be explicitly and analytically discussed. The simplicity of the model, its intimate connection with the original Bass’ modeling framework and the exact transient solutions offer a rather unique theoretical stylized frame-work to describe how innovation jointly develops in space and time.
Cite this paper
F. Hashemi, M. Hongler and O. Gallay, "Spatio-Temporal Patterns for a Generalized Innovation Diffusion Model," Theoretical Economics Letters, Vol. 2 No. 1, 2012, pp. 1-9. doi: 10.4236/tel.2012.21001.
References
[1]   E. Mansfield, “Technical Change and the Rate of Imitation,” Econometrica, Vol. 29, No. 4, 1961, pp. 741-766. doi:10.2307/1911817

[2]   Z. V. Griliches, “Hybrid Corn: An Exploration in the Economics of Technological Change,” Econometrica, Vol. 25, No. 4, 1957, pp. 501-522. doi:10.2307/1905380

[3]   Z. V. Griliches, “Hybrid Corn and the Economics of Innovation,” Science, Vol. 132, No. 3422, 1960, pp. 275- 280. doi:10.1126/science.132.3422.275

[4]   F. Bass, “A New Product Growth Model for Consumer Durables,” Management Science, Vol. 15, No. 5, 1969, pp. 215-227. doi:10.1287/mnsc.15.5.215

[5]   J. A. Schumpeter, “Business Cycles: A Theoretical, Historical and Statistical Analysis of the Capitalist Process,” McGraw-Hill, New York, 1939.

[6]   B. Jovanovic and R. Rob, “Long Waves and Short Waves: Growth through Intensive and Extensive Search,” Econo- metrica, Vol. 58, No. 6, 1990, pp. 1391-1409. doi:10.2307/2938321

[7]   R. Pastor-Satorras and A. Vespig-niani, “Epidemic Spreading in Scale-Free Networks,” Physics Review Letters, Vol. 86, No. 14, 2001, pp. 3200-3203. doi:10.1103/PhysRevLett.86.3200

[8]   E. Glaeser, B. Sacer-dote and J. Scheinkman, “Crime and Social Interactions,” Quarterly Journal of Economics, Vol. 111, No. 2, 1996, pp. 507-548. doi:10.2307/2946686

[9]   R. Cont and J. P. Bou-chard, “Herd Behavior and Aggregate Fluctuations in Financial Market,” Macroeconomic Dynamics, Vol. 4, No. 2, 2000, pp. 170-196. doi:10.1017/S1365100500015029

[10]   A. Corcos, J.-P. Eck-mann, A. Malaspinas, Y. Malevergne and D. Sornette, “Imita-tion and Contrarian Behavior: Hyperbolic Bubbles, Crashes and Chaos,” Quantitative Finance, Vol. 2, No. 4, 2002, pp. 264-281. doi:10.1088/1469-7688/2/4/303

[11]   P. Dai Pra, W. J. Rung-galdier, E. Sartori and M. Tolotti, “Large Portfolio Losses: A Dynamic Contagion Model,” Annals of Applied Probability, Vol. 19, No. 1, 2009, pp. 347-394. doi:10.1214/08-AAP544

[12]   U. Horst, “Stochastic Cascades, Credit Contagion and Large Porfolio Losses,” Journal of Eco-nomic Behavior & Organization, Vol. 63, No. 1, 2007, pp. 25-54. doi:10.1016/j.jebo.2005.02.005

[13]   D. Lopez-Pintado and D. J. Watts, “Social Influence, Binary Decisions and Collective Dynamics,” Rationality and Society, Vol. 20, No. 4, 2008, pp. 399-443. doi:10.1177/1043463108096787

[14]   D. Lopez-Pintado, “Dif-fusion in Complex Social Networks,” Games and Economic Behavior, Vol. 62, No. 2, 2008, pp. 573-590. doi:10.1016/j.geb.2007.08.001

[15]   F. Collet, P. Dai Pra and E. Sartori, “A Simple Mean- Field Model for Social Interactions: Dynamics, Fluctuations, Criticality,” Journal of Statistical Physics, Vol. 139, 2010, pp. 820-858. doi:10.1007/s10955-010-9964-1

[16]   T. W. Valente, “Network Models of Diffusion of Innovations,” Hampton Press, 1995.

[17]   W. Brock and S. N. Durlauf, “Discrete Choice with Social Interactions,” Review of Economic Studies, Vol. 68, No. 2, 2001, pp. 235-260. doi:10.1111/1467-937X.00168

[18]   L. Blume, “The Statistical Mechanics of Strategic Interactions,” Games and Economic Theory, Vol. 5, 1993, pp. 387-424. doi:10.1006/game.1993.1023

[19]   M. Schultz, “Statistical Physics and Economics—Con- cepts, Tools and Applications,” Springer Verlag, 2003.

[20]   L. Blume and S. N. Durlauf, “The Interactions-Based Approach to Socioeconomic Behavior,” Mimeo, Department of Economics, University of Wisconsin, 1998.

[21]   W. Brock and S. N. Durlauf, “Interaction-Based Model,” In: J. Heckmann and E. Leamer, Eds., Handbook of Econometrics, Vol. 5, 3297-3380, North Holland, 2001.

[22]   G. Ellison, “Learning, Local Interactions and Coordination,” Econometrica, Vol. 61, No. 5, 1993, pp. 1047-1071. doi:10.2307/2951493

[23]   G. Ellison and D. Fudenberg, “Rules of Thumb for Social Learning,” Journal of Political Economy, Vol. 101, 1993, pp. 612-644. doi:10.1086/261890

[24]   R. Andergassen, F. Nardini and M. Ricottilli, “Innovation Waves, Self-Organized Criticality and Technological Convergence,” Journal of Economic Behavior & Organization, Vol. 61, No. 4, 2006, pp. 710-728. doi:10.1016/j.jebo.2004.07.009

[25]   D. Levine, “Is Behavioral Economics Doomed?” Max Weber Lecture, 2009.

[26]   D. Levine and D. Fudenberg, “Learning and Equilibrium,” Annual Review of Economics, Vol. 1, No. 1, 2008, pp. 385-419.

[27]   D. Levine and W. Pesendorfer, “Evolution of Cooperation through Imitation,” Games and Economic Behavior, Vol. 58, No. 2, 2007, pp. 293-315. doi:10.1016/j.geb.2006.03.007

[28]   U. Horst, “Dynamic Sys-tems of Social Interactions,” Journal of Economic Behavior & Organization, Vol. 73, No. 3, 2010, pp. 158-170. doi:10.1016/j.jebo.2009.09.007

[29]   A. Foster and M. Rosenzweig, “Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture,” Journal of Political Economy, Vol. 103, No. 6, 1995, pp. 1176-1209. doi:10.1086/601447

[30]   E. M. Rogers, “Diffusion of Innova-tions,” Free Press, New York, 1992.

[31]   P. Krugman, “Geog-raphy and Trade,” MIT Press, Cambridge, 1991.

[32]   M. P. Feldman, “Knowledge Complementary and Innovation,” Small Business Economics, Vol. 6, 1994, pp. 363-372. doi:10.1007/BF01065139

[33]   M. P. Feldman, “The Geogra-phy of Innovation,” Kluwer Academic Publishers, Boston, 1994.

[34]   A. C. Case, “Spatial Patterns in Household De-mand,” Econometrica, Vol. 59, No. 4, 1991, pp. 953-965. doi:10.2307/2938168

[35]   D. B. Audretsch and M. P. Feldman, “Knowledge Spillovers and the Geography of Innovation and Production,” American Economic Review, Vol. 86, No. 3, 1966, pp. 630-640.

[36]   Z. J. Acs, D. B. Audretsch and M. P. Feldman, “Real Effects of Academic Research: Comment,” American Economic Review, Vol. 82, No. 1, 1992, pp. 363-367.

[37]   Z. J. Acs, D. B. Audretsch and M. P. Feldman, “R & D Spillovers and Recipient Firm Size,” Review of Eco-nomics and Statistics, Vol. 76, No. 2, 1994, pp. 336-340. doi:10.2307/2109888

[38]   A. Jaffe, M. Trajtenberg and R. Henderson, “Geographic Localisation of Knowledge Spillovers as Evidenced by Patent Citations,” Quarterly Journal of Eco-nomics, Vol. 108, No. 3, 1993, pp. 577-598. doi:10.2307/2118401

[39]   G. A. Akerlof, “Social Distance and Social Decisions,” Econometrica, Vol. 65, No. 5, 1997, pp. 1005-1027. doi:10.2307/2171877

[40]   T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet, “Novel Type of Phase Transition in a System of Self-Driven Particles,” Physical Review Letters, Vol. 75, No. 6, 1995, pp. 1226-1229. doi:10.1103/PhysRevLett.75.1226

[41]   F. Cucker and S. Smale, “Emergent Behavior in Flocks,” IEEE Transactions on Automatic Control, Vol. 52, No. 5, 2007, pp. 852-862. doi:10.1109/TAC.2007.895842

[42]   T. W. Ruikgrok and T. T. Wu, “A Completely Solvable Model of the Nonlinear Boltz-mann Equation,” Physica A, Vol. 113, No. 2, 1982, pp. 401-416. doi:10.1016/0378-4371(82)90147-9

[43]   M.-O. Hongler, O. Gallay, M. Hülsmann, P. Cordes and R. Colmorn, “Centralized Versus Decentralized Control —A Solvable Stylized Model in Transportation,” Physica A, Vol. 389, No. 19, 2010, pp. 4162-4171. doi:10.1016/j.physa.2010.05.047

[44]   M.-O. Hongler and L. Streit, “A Probabilistic Connection between the Burgers and a Discrete Boltzmann Equation,” Europhysics Letters, Vol. 12, 1990, pp. 193-197.

[45]   E. Gutkin and M. Kac, “Propagation of Chaos and the Burgers’ Equation,” SIAM Journal of Applied Mathematics, Vol. 434, No. 4, 1963, pp. 971-980.

[46]   M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions,” Dover, see entry 9.6.

 
 
Top