NS  Vol.1 No.3 , December 2009
Focal shift of radially polarized bessel-modulated gaussian beam by phase shifting
ABSTRACT
Focal shift of radially polarized Bessel-modu- lated Gaussian (QBG) beam by phase shifting is investigated theoretically by vector diffraction theory. The phase shifting distribution is the function of the radial coordinate. Calculation results show that intensity distribution in focal region can be altered considerably by the topo- logical charge of QBG beam and the phase pa-rameter that indicates the vary degree of the phase shifting along radial coordinate. Topolo- gical charge induces the focal shift in trans-verse direction, while phase parameter leads to the focal shift along optical axis of the focusing system. More interesting, the focal shift may be incontinuous in certain case.

Cite this paper
nullGao, X. , Gao, M. , Hu, S. , Guo, H. , Wang, J. and Zhuang, S. (2009) Focal shift of radially polarized bessel-modulated gaussian beam by phase shifting. Natural Science, 1, 229-233. doi: 10.4236/ns.2009.13031.
References
[1]   C. F. R. Caron and R. M. Potvliege, (1999) Bessel-modulated Gausian beams with quadratic radial dependence. Opt. Commun, 164, 83-93.

[2]   Z. Hricha and A. Belafhal, (2005) Focal shift in the axisymmetric Bessel-modulated Gaussian beam. Opt. Commun, 255, 235-240.

[3]   X. Wang and B. Lü, (2002) The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams. Opt. Quant. Electron, 34, 1071-1077.

[4]   A. Belafhal and L. Dalil-Essakali, (2000) Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system. Opt. Commun, 177, 181-188.

[5]   X. Wang and B. Lü, (2003) The beamwidth of Bessel- modulated Gaussian beams. J. Mod. Opt, 50, 2107-2115.

[6]   B. Lü and X. Wang, (2002) Kurtosis parameter of Bessel-modulated Gaussian beams propagating through ABCD optical systems. Opt. Commun, 204, 91-97.

[7]   Z. Mei, D. Zhao, X. Wei, F. Jing, and Q. Zhu, (2005) Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture. Optik, 116, 521-526.

[8]   Y. Li and E. Wolf, (1981) Focal shifts in diffracted converging spherical waves. Opt. Commun, 39, 211-215.

[9]   M. M. Corral, M. T. Caballero, L. M. Escriva, and P. Andres, (2001) Focal-shift formula in apodized non- telecentric focusing systems. Opt. Lett, 26, 1501- 1503.

[10]   C. J. R. Sheppard and P. T?t?k, (2003) Focal shift and axial coordinate for high-aperture systems of finite Fresnel number. J. Opt. Soc. Am. A, 20, 2156-2162.

[11]   X. Gao, F. Zhou, W. Xu, and F. Gan, (2005) Gradient force pattern, focal shift, and focal switch in an apodized optical system. Optik, 116, 99-106.

[12]   X. Gao and J. Li, (2007) Focal shift of apodized truncated hperbolic-Cosine-Gaussian beam. Opt. Com- mun, 273, 21-27.

[13]   K. S. Youngworth and T. G. Brown, (2000) Focusing of high numerical aperture cylindrical-vector beams. Optics Express, 7, 77-87.

[14]   Q. Zhan, (2009) Cylindrical vector beams: from mathe- matical concepts to applications. Advances in Optics and Photonics, 1, 1–57.

[15]   X. Gao, S. Hu, H. Gu, and J. Wang, (2009) Focal shift of three-portion concentric piecewise cylindrical vector beam. Optik, 120, 519-523.

[16]   F. Lu, W. Zheng, and Z. Huang, (2009) Coherent anti- stokes Raman scattering micriscopy using tighly focused radially polarized light. Opt. Lett, 34, 1870-1871.

[17]   S. Sato and Y. Kozawa, (2009) Hollow vortex beams. J. Opt. Soc. Am. A, 26, 142-146.

[18]   J. Arlt and M. J. Padgett, (2000) Generation of a beam with a dark focus surrounded by regions of higher intensity: The optical bottle beam. Opt. Lett, 25, 191- 193.

[19]   D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, (2002) Generation of dough- nut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%. Opt. Lett, 27, 1351- 1353.

 
 
Top