Russell G. Keanini

Professor Russell G. Keanini

Department of Mechanical Engineering and Engineering Science

The University of North Carolina, USA.






1992 Ph.D., Mechanical Engineering,University of California,USA.

1987 M.S., Mechanical Engineering,University of Colorado,USA.

1983 B.S., Chemical and Petroleum Refining Engineering, Colorado School of Mines, country,USA.



  1. Keanini, R. G. (2011) ”Green’s function-stochastic methods framework for probing nonlinear problems: Burgers’ equation, nonlinear Shrodinger’s equation, and hydrodynamic organization of near-molecularscalevorticity,” arXiv:1007.2125; Annals Phys., 326, pp. 1002-1031.
  2. Keanini, R. G., Srivastava, N. Tkacik, P., Weggel, D. C., and Knight P. D. (2011) ”Stochastic rocket dynamics under random nozzle side loads: Ornstein-Uhlenbeck boundary layer separation and its course grained connection to side loading and rocket response,” Annalen der Physik, 523, pp. 459-487.
  3. Srivastava, N., Tkacik, P. and Keanini, R. G. (2010) ”On the influence of nozzle random side loads on launch vehicle dynamics,” J. Applied Physics, 108, pp. 044911-044919.
  4. Tkacik, P. , Keanini, R. G., Srivastava, N. and Tkacik, M. P. (2011) ”Color Schlieren imaging of high pressure rocket nozzle flow using a simple, low cost test apparatus,” J. of Visualization, 14, pp. 11-14.
  5. Srivastava, N., Keanini, R. G. and Tkacik, P. (2011) ”Stochastic rocket dynamics and stability under altitude-dependent, determinisitic aerodynamic, random wind, and random nozzle-side-loads,” submitted for publication.
  6. Keanini, R. G., Thompson, J. and Srivastava, N. (2011) ”Stochastic solution of nonlinear and nonhomogeneous evolution problems by a differential Kolmogorov equation,” arXiv:0708.3202v1; submitted for publication.
  7. Keanini, R.G. (2007) ”Random Walk Methods for Scalar Transport Problems Subject to Dirichlet, Neumann, and Mixed Boundary Conditions,” Proc. Royal Soc. A: Math., Phys., and Engrg., 453, pp. 435-460.
  8. Keanini, R. G. and Brown, A. (2007) ”Scale Analysis and Experimental Investigation of Compressible Turbulent Boundary Layer Separation in Nozzles,” Euro. J. Mech. B - Fluids, 26, pp. 494-510.
  9. Keanini, R.G., Thompson, J., and Gona, K. (2007) ”Linear and Nonlinear Waves on Fiber Coating Entrance Menisci,” Far East J. Appl. Math, 28, pp.173-182.
  10. Keanini, R.G., Watkins, G., Koike, M., and Okabe, T. (2007) ”Theoretical study of alpha case formation during titanium casting,” Metallurgical and Materials Transactions B, 38, pp. 729-732.
  11. Keanini, R.G., Watanabe, K. and Okabe, T. (2005) ”Theoretical Model of the Two-Chamber Pressure Casting Process,” Metallurgical and Materials Transactions B, 36, pp. 283-292.
  12. Ling, X., Keanini, R.G. and Cherukuri, H.P. (2005) ”An Implicitly Regularized Noniterative Finite Element Method for Parabolic Inverse Heat Conduction Problems,” Computational Mechanics, 36, pp. 117-128.
  13. Ling, X., Keanini, R.G., Cherukuri, H.P. and Smelser, R. (2004) ”An Inverse Method for Estimating Surface heat Fluxes with Application to a Quenching Problem,” AIP Conference Proceedings, 712, pp. 1191-1196.
  14. Lawton, K.M., Patterson, S. and Keanini, R.G. (2003) ”Direct Contact Packed Bed Thermal Gradient Attenuators: Theoretical Analysis and Experimental Observations,” Rev. Scientific Instruments, 74, pp. 2886-2893.
  15. Ling, X., Keanini, R.G. and Cherukuri, H.P. (2003) ”A Noniterative Finite Element Method for Inverse Heat Conduction Problems,” Int. J. Numerical Methods in Engrg., 56, pp. 1315-1334.
  16. Okabe, T., Elvebak, B., Carrasco, L., Ferracane, J.L., Keanini, R.G. and Nakajima, H. (2003) ”Mercury Release from Dental Amalgams into Continuously Replenished Liquids,” Dental Materials, 19, pp. 38-45.
  17. Phan, S., Hocken, R.J., Smith,, S.T., and Keanini, R.G. (2002) ”Simultaneous Measurement of Spatially Separated Forces Using a Dual-Cantilever Resonance-Based Touch Sensor,” Rev. Sci. Instrum., 73, 318-322.
  18. Lawton, K.M., Patterson, S., and Keanini, R.G. (2001)”Precision Temperature Control of High-ThroughputFluid Flows: Experimental and Theoretical Analysis,” J. of Heat Transfer, 123, 796-802.
  19. Keanini, R.G., Ferracane, J., and Okabe, T. (2001)”Theoretical Models of Mercury Dissolution from Dental Amalgams in Neutral and Acidic Flows,” Metallurgical and Materials Transactions B, 32B, 409-416.
  20. Keanini, R. G. (2000) ”Structure and Particle Transport in Second-Order Stokes Flow,” Phys Rev. E, 61, 6606-6620.